Status of LUT for PID Detectors

Thomas Ullrich on behalf of the PID DSCs TIC Meeting (Zoom) April 15, 2024

Reminder

- PID groups are in the process of implementing their original 'stand-alone' simulation and reconstruction software in ElCrecon
- Process takes time and might not be fully completed (and tested) in time for the simulation needed for the TDR
- Only way out is to handle the reconstruction/simulations externally and create lookup tables for the TDR analyses

Summary of discussion among PID & S&C & many more

- 1. The PID lookup mechanism is a temporary patch, while the long-term goal is the job of developing a full PID reconstruction as part of EICrecon. The goal of the PID lookup mechanism to provide a first order approximation to make possible the usage of PID information in the analysis and physics studies in the short-term perspective.
- 2. The PID lookup mechanism will be integrated in ElCrecon. The respective 'factory' and data structures are already or will be made available by the S&C group.

Reminder (continued)

- The S&C group will create an example for the DSCs to guide their specific efforts 3.
- 4. vertex.
 - Comment: To define the kinematics at the vertex is easier to implement than at the entry point to the PID system. 1. One would need additional xyz positions to implement the η,φ dependence.
- The particles range to cover are: π , K, p, e, null; here 'null' means that no PID information is 5. available; this is rather implementation specific and the easiest approach should be chosen by the implementer.
- The DSCs have to provide weights/probabilities of the form: Pij(p, η , φ , q) where i is the generated 6. particle type (π , K, p, e) and j is the hypothesis where j is one of π , K, p, e of course.
 - Comments: as of now, the P is meant as a normalized probability, meaning Sum over j(Pij) = 11.
 - Comments: Further details to be given by the PID system. Any algorithm needs to be based on the detailed 2. information of the detector system.
- We will have to generate a random number according to the given Ps for a given i to make the final 7. decision. This should be integrated into ElCrecon.
- A decision quality parameter was suggested to be provided along the PID result. While easily 8. envisioned it is not at all straightforward to do in a statistically meaningful way. Possible addition at a later point.

The PID info is to be created as a function of the following kinematic variables: p (GeV), η , φ (rad), q; with q either +1 or -1 depending on the charge of the particle. The variables are defined at the

hpDIRC

LUT PID for hpDIRC

Based on Cherenkov track resolution map obtained by using the full standalone Geant4 simulation and reconstruction

- uses 0.5 mrad tracking resolution combined with multiple scattering inside radiator
- accounts for azimuthal acceptance gaps
- includes threshold mode PID
- no backgrounds other than effects caused by primary particle

example of phi acceptance for K⁻ @ 0.55 GeV/c

momentum [GeV/c]

separation map, example for pion/K 140 120 40 20 60 80 100 polar angle [deg] # pions 200 entries ¹⁶⁰4. .3 s 140E 120 100 80 60 ⁴⁰ ln L(κ) - ln L(π) -40 20 % efficiency | 100 90 80 70 60 2 4 separation power [s.d.]

 π/K separation power [s.d.]

LUT PID for hpDIRC

The LUT in ASCII:

 11
 1
 9.80
 69.00
 21.50
 0.3932
 0.3792
 0.2150
 0.0125

 11
 1
 9.80
 69.00
 22.00
 0.3894
 0.3757
 0.2202
 0.0147

 11
 1
 9.80
 69.00
 22.50
 0.3945
 0.3764
 0.2170
 0.0121

 11
 1
 9.80
 69.00
 23.00
 0.3933
 0.3803
 0.2146
 0.0118

 11
 1
 9.80
 69.00
 23.50
 0.3929
 0.3747
 0.2186
 0.0139

 11
 1
 9.80
 69.00
 23.50
 0.3919
 0.3760
 0.2185
 0.0136

Full version is here: https://github.com/rdom/fastpid/blob/master/ hpdirc_fastpid.tar.gz

Description of PID LUT's columns:

- 1) PDG code of the particle (e 11, pi 211, K 321, p 2212)
- 2) charge (-1,1)
- 3) momentum, [0.2,10] with 0.2 GeV/c step, for higher momenta one should use 10 GeV/c
- 4) polar angle, [25,160] with 1 degree step
- 5) azimuthal angle [0,30] with 0.5 degree step, there is 12x azimuthal symmetry
- 6) probability for electron
- 7) probability for pion
- 8) probability for kaon
- 9) probability for proton

Probabilities are normalized to 1 (for e,pi,K,p). If all probabilities = 0 then PID is not possible.

Example of probabilities for π^+ at 5.5° azimuthal angle:

pi/e efficiency map

nomentum [GeV/c] 0.9 0.5 0.3 0.2 120 140 40 140 160 60 100 100 120 polar angle [deg] polar angle [deg] pi/K efficiency map pi/p efficiency map [GeV/c] 0.9 0.8 momentum 0.6 0.5 0.4 0.1 100 120 100 140 160 40 60 80 140 120 polar angle [deg] polar angle [deg]

pi/pi efficiency map

LUT PID for hpDIRC

Example of threshold mode

Require more than 5 detected photons for robust PID

positive ID for pions over whole phase space @ 0.45 GeV/c

positive ID for pions over large part of phase space @ 0.5 GeV/c

acceptance gap due to total internal reflection

Fine binning in angle and momentum needed to deal with rapid changes in photon yield

pfRICH

pfRICH LUT Status

- Initial set of pfRICH tables (π /K/p and e/ π /K/p) submitted on 3/12
 - 4 η bins [-3.5,-3.0], [-3.0,-2.8], [-2.8,-2.0], [-2.0,-1.5]
 - 25 momentum bins [0.05, 0.1], [0.1, 1.0] in 0.1 steps, and [1.0, 15.0] in 1.0 steps
 - Require > 5 Cherenkov photons to report a PID determination (p > 0.7, 3.0, and 5.0 for pions, kaons, and protons, respectively)
- Strategy: start simple and then refine
 - For March: provide probabilities based on track level Cherenkov angle resolutions (a la ATHENA)
 - Neglect B-field, charge dependence, φ dependence, vertex smearing, and track resolution (do spot checks of B-field and track resolution to get an idea of importance)
 - Add these effects in subsequent iterations
- Next Steps:
 - Add neglected effects
 - Estimate background effects
 - Obtain probabilities directly from reconstruction

Next Steps

- For the next iteration of LUTs, we want to move away from track level Cherenkov angle resolutions and utilize the full (stand alone) reco machinery
 - More robust migration matrix
 - More control over detected photon count and sub-threshold cases
- Next iterations will include B-Field, charge dependence, vertex and momentum smearing, and phi dependence

Need to decide on phi binning scheme

- Mostly constant response in phi with localized regions of inefficiency
- What is easier for software and infrastructure to handle – variable sized phi bins, or large number of bins?

d R I C H

11

dRICH LUTs

- dRICH simulations are running within ePIC framework
- LUT still needed since ElCrecon is not able to handle all complex event structure yet
- Generation of LUTs is therefore more time consuming than stand-alone app
- Present LUTs are preliminary tables
 - Nominal aerogel (not yet optimized)
 - Nominal dRICH geometry
 - No noise (expected negligible at beginning of ePIC and for gas)
 - Only 3 eta bins
 - Averaged on phi (azimuth)
 - One file for e/π and one for $\pi/k/p$
- LUTs will be refined while the full epIC simulation/analysis chain is commissioned

From ePIC simulations: refractive index sigma values

separation at mid-point Delphes: efficiency & mis-ID probabilities

Hadron Identification

Aerogel

Currently: gas and aerogel are different LUTs - might merge soon

Electron Separation

Aerogel

Right now PID info is not used in the electron finder!

Gas

TOF Lookup Table

- Assume 35ps (25ps) sensor + R/O resolution in barrel (endcap) Additional 20ps t_0 resolution added in quadrature (conservative)
- TOF is symmetric (enough) in φ , charge
- 17 bins in θ [2.5, 154.6] deg
 - Nicely covers gap between forward and barrel with single empty bin
- 20 bins in p: [0, 6] GeV/c
 - Covers most relevant momentum range

Omits slight curve in lower momentum acceptance in TOF barrel, but good enough for now

Summary

All PID DSCs have LUT submitted

- hpDIRC has also threshold mode included
- pfRICH submitted initial set of LUT but will continue to add more effects
- physics analysis chain becomes more realistic with more features added
- ARICH has very basic LUTs produced that will be refined while the full ePIC ToF submitted LUTs, room for improvements
- Next
 - Next simulation campaign will only use LUT partially
 - Looking forward to feedback from Physics PWG (important)
 - PID DSCs plan to further refine tables also depends on the level of implementation in ElCrecon

17

TOF Reconstruction Recap I

ePIC tracking measures momentum and track length

Enables calculation of expected mean hit times of various particle species

p = 1.00 GeV/c, path = 1.00 m, resolution = 0.04 ns

TOF Reconstruction Recap II

- ePIC tracking measures momentum and track length
- species

Enables calculation of expected mean hit times of various particle species Apply expected distribution based on resolutions: yields PDF for each

TOF Reconstruction Recap III

ePIC tracking measures **momentum** and **track length**

- Enables calculation of expected mean hit times of various particle species
- Apply expected distribution based on resolutions: yields PDF for each species

TOF system measures **hit time**

Comparison with PDFs yields likelihood and thus reconstruction probability

- electron TOF PDF pion TOF PDF kaon TOF PDF proton TOF PDF measured TOF

- L(e): 2.52 ulletLL(e): 0.92
- L(pi): 6.88
 - LL(pi): 1.93
- L(K): 0.00 LL(K): -28.7 —
- L(p): 0.00
 - LL(p): -419
- **Prob(pi)** = L(pi) / (sum(L)) = 72.3%ullet

TOF Reconstruction Recap IV

ePIC tracking measures momentum and track length Enables calculation of expected mean hit times of various particle species Apply expected distribution based on resolutions: yields PDF for each species

- TOF system measures hit time
 - Comparison with PDFs yields likelihood and thus reconstruction probability

TOF pi/K Standalone Separation

