INTT BusExtender

Takashi Hachiya Nara Women's University

sPHENIX-INTT

INTermediate Si-Tracker, INTT

- a 2 layer barrel tracker w/ Si-strip
 - R~7,10cm

INTT half ladder

- Electrically isolated into two halves
- Speed : ~200Mbps for a LVDS pair
- Half ladder = 26 RO ASIC = 56 LVDS pairs

sphenix-intt

INTermediate Si-Tracker, INTT

- a 2 layer barrel tracker w/ Si-strip
 - R~7,10cm

INTT half ladder

- Electrically isolated into two halves
- Speed : ~200Mbps for a LVDS pair
- Half ladder = 26 RO ASIC = 56 LVDS pairs
- Bus-Extender: Long and high signal-density cable
 - ROC board : 1.2 m away from INTT
 - Space is tight (only a few cm btw TPC and MVTX)

Requirements

- Length: ~ 120cm
- Line density = 62 LVDS pairs and + Power/GND
- Data speed = 200 Mbps LVDS (Z_{diff} =100 Ω)
- Space : less than ~5cm width w/ flexibility

No commercial cable available in the market. We developed 2024/3/20 BusExtender for INTT, Takashi Hachiya

Bux-Ext development

- We adopt Flex PCB technology because of fine wiring and flexibility
- Bus-Ext prototype :
 - Structure
 - 130 x 3.5 cm²
 - 4 layers including signal, power, GND layers
 - + 62 LVDS pairs (Line and space : 130 & 130 $\mu\text{m})$
 - Impedance control : Z_{diff} : 100 Ω w/ strip line
 - Substrate : Liquid Crystal Polymer (LCP)
 - Signal loss smaller than Polyimide for Hi freq (small dissipation-tangent)
 - Connector at both side
 - Final design was determined using EM SIM for PCB

They are laminated w/ glue sheet

Transmission loss w/ freq

- LCP has a smaller tangent
 - Normal FPC is made from Polyimide(Capton)
- BuxExt used LCP+Cu(12um)

	LCP	Polyimide
Dielectric Constant	3.0@2GHz	3.2@ 1GHz
Dissipation tangent	0.0008 @ 2GHz	<u>0.0085@1GHz</u>

図 1: 抵抗損失と誘電損失の周波数特性(碓井有三氏から引用)

BusExt Collaboration

- Study what is the technical limits
- Evaluate about electrical characteristics by simulation prior the prototype production
- Prote-type, Pre-Production, Mass production

Impedance control Z

• Diff –Z should be 100Ω for LVDS transmission (Z=50 Ω for single)

- BusExt used "strip-line" structure to control Z_{##(GND)}
 - Difficulties in manufacturing
 - hard to make "narrow" signal line uniformly for 130cm
 - 130um width is minimum (said). Then substrate should be thick (100um thick)
 - Why it is hard
 - In the FPC production, line uniformity is limited by each Light exposure and Etching process
 - Standard FPC
 - 50um line width + 50um thick Polyimide

Production process

- No single manufacturer can make this.
 - No manufacturing equip. available for long FPC (standard FPC size is upto 50x50cm^2)
 - We asked 4 manufacturers (FPC, drill, plating, surface treatment)
- All the processes was done in Japan
 2024/3/20
 BusExtender for INTT, Takashi Hachiya

Bus Extender Performance

- Electrical properties
 - Signal loss vs freq. ,
 - Z_{diff} by TDR
 - Eye diagram
- Mechanical property
 - Accuracy of line & space
- Aging test
- Radiation hardness

Electrical Performance

(slight smaller than 100Ω)

- Freq. dependence(s-parameter)
 - Signal loss : ~30%、
 - Reflection: < 10%

Data is consistent with the EM field simulation

Z ~ 90 Ω

Electrical Performance

- Freq. dependence(s-parameter)
 - Signal loss : ~30%、
 - Reflection: < 10%

Eye-Diagram

- Eye-diagram : Accumulated pulse shape for 1 bit
- Found good opening

We did aging test and rad-hardness test. It was good shape

Issues we found was fixed

- For Bus-Extender
 - Line uniformity Fixed
 - Thru-hole prodution \rightarrow Fixed
 - Aging test (by Thermal sheck test) \rightarrow Fixed
 - Rad-hardness(by gamma ray) \rightarrow Checked
 - Yield rate

$$\rightarrow$$
 Fixed(30% \rightarrow 100%)

- It took long time (~4 or 5 years)
- We hope we can be of help for ePIC TOF

Aging Test

- Keep healthy at least 3 year operation
- Mechanical stress by temperate
 - LCP is expanded and shrunk
 - Thru-hole could be damaged.

Cu plating ~35µm Cu Cu LCP LCP Cu Cu LCP LCP Cu Cu LCP LCP Cu スルーホー 3.5 80 70 3 60 50 2.5 40 温度 [degree C] 抵抗值 [Ω] 30 20 10 1.5 0 -10 -20 2020/4/9 12:00 2020/4/19 12:00 2020/4/29 12:00 2020/5/9 12:00 2020/5/19 12:00 2020/5/29 12:00

- Temperature cycle
 - -15 (30min.) ~ 75°C (30min.) with 1~2min. transition.
 - 1000 cycles (40 days)
- Test FPC sample
 - 4 layers, same as bus extender
 - 400, 1000, 1000 throu-holes are daisy chained and its resistance monitored .
- Results
 - Resistances changed with temperature
 - <u>All FPC samples are healthy after 1000</u> cycles.

2024/3/20

BusExtender for INTT, Takashi Hachiya

----- DMM1 ----- DMM2 ----- DMM3

14

時刻