# ePIC barrel and endcap ECal overlapping study

#### Huan Zhong Huang, Oleg Tsai, Zhiwan Xu, and Zhongling Ji



# UCLA

March 20, 2024

## Changes from brycecanyon to craterlake



- Previous report based on brycecanyon on May 17, 2023.
- The coverage of barrel ECal in craterlake slightly changed.
- Previously used a slightly larger radius (246 cm, downto  $\eta = 1.1$ ) for fEMCal in brycecanyon.
- This report tested fEMCal radius of 195 and 185 cm.

| Component     | Configuration | Length | Inner R | Outer R | Start | End |
|---------------|---------------|--------|---------|---------|-------|-----|
| Barrel EMCal  | Brycecanyon   | 498    | 79      | 133     | -299  | 199 |
|               | Craterlake    | 470    | 81      | 116     | -274  | 196 |
| Forward EMCal | Brycecanyon   | 30     | 14      | 195     | 330   | 360 |
|               | Craterlake    | 30     | 14      | 195     | 330   | 360 |

Table from brycecanyon and craterlake. The previous study in DD4hep and the material scan in brycecanyon used a slightly larger size (246 cm) of fEMCal for checks.

# Material scan: brycecanyon vs craterlake



- Brycecanyon
- Barrel coverage slightly over  $\eta = 1.5$
- fEMCal downto  $\eta = 1.1$  ( $R_{outer} = 246$  cm)



- Craterlake
- Barrel coverage slightly below  $\eta = 1.5$
- fEMCal downto  $\eta = 1.3~(\textit{R}_{outer} = 195~\text{cm})$



# Barrel ECal bad above $\eta = 1.4$ in brycecanyon



Zhongling Ji (UCLA)



### Barrel ECal bad above $\eta = 1.3$ in craterlake













2000

180

160

1400

1200

100

80

60

40

20

Res = 0.02829

h edep 1 10 copy

3 807

0 1602

705.2/30

3.719e-123

1959 + 21.6

3,919 + 0.001

É [GeV]

Mana

Std Dav

v2/ndf

Constant

Prob

Mean

Sigma 0.1109 ± 0.0008









# **Barrel ECal resolution**





For  $\eta$  larger than the red line, the barrel Ecal does not have good resolutions and we need the fEMCal.

# Single photon resolutions vs $\eta$ at 2 GeV





Craterlake: need fEMCal for  $\eta > 1.3$ 

Brycecanyon: need fEMCal for  $\eta > 1.4$ 

## **Barrel + endcap ECal resolution**





Brycecanyon: need fEMCal for  $\eta > 1.4$ 



Combined barrel and endcap ECal provides good energy resolution in all  $\eta$  ranges.

# Checks for fEMCal with $R_{outer} = 185$ cm



- The previous study used  $R_{outer} = 195$  cm for fEMCal in craterlake.
- The following checks use  $R_{outer} = 185$  cm for fEMCal in craterlake.

# Material scan in craterlake: 195 vs 185 cm



- Craterlake
- fEMCal with  $R_{outer} = 195 \text{ cm}$





- Craterlake
- fEMCal with  $R_{outer} = 185 \text{ cm}$

#### **Barrel + endcap ECal resolution**





Combined ECal with  $R_{outer} = 185$  cm of fEMCal has poor energy resolution in some  $\eta$  ranges.



- Previously in brycecanyon, need fEMCal coverage downto  $\eta = 1.4$  ( $R_{outer} = 173$  cm).
- Currently in craterlake, need fEMCal coverage downto  $\eta = 1.3$  ( $R_{outer} = 195$  cm).
- In currently configuration of craterlake, fEMCal with  $R_{outer} = 185$  cm is not large enough to provide good energy resolution in all  $\eta$  ranges when combined with the barrel ECal.
- If length or radius of barrel Ecal changes again, we need to repeat same exercise again.