A brief overview of the Geant4 Tutorials @JLab (March 2024)

Maxim Potekhin

ePIC S&C Meeting 04/10/2024

About these slides

- The Geant4 event at JLab included a very large amount of material that is impossible to cover in any amount of detail in less than a few hours (or days)
- Included here are some pointers to a few topics that caught my attention, and a general outline of the progression of the presentations and hands-on sessions
- All combined, this was a very good and comprehensive starting point for anyone wishing to enhance or acquire their knowledge of Geant4
- The materials used in these tutorials are not committed to any central repository or a document management system. As per Geant4 tradition, informed by experience, they remain attached to the Indico agenda of the event.

General info

- Time: March 25–29, 2024. Venue: JLab CEBAF Center
- https://indico.jlab.org/event/828/
- An in-person event, well attended: ~60 participants with various research backgrounds (e.g. radiochemistry, nuclear)
- A complete introduction to Geant4, progressing from the basics to fairly advanced topics during the week; a fully functional installation of Geant4 v11.2 by the participants was a prerequisite to the course
- Daily "hands-on" sessions, well prepared and well documented

The hands-on materials: the progression

- Starting point: the well known "B1" example with simple geometry which illustrates the basics of volume definition and placement
- Finishing point: derived from "B5". "This example implements a double-arm spectrometer with wire chambers, hodoscopes and calorimeters. Event simulation and collection are enabled, as well as event display and analysis."
- ...as such, a fairly realistic representation of a fixed-target experiment

Presentations: some points of interest

- Physics, and Physics List selection
- Stack management (three stacks)
- Multithreading
 - Sub-event parallelization (work in progress)
- Scoring and probes
- The "analysis"
- Not relevant to HEP/NP, but worth a mention
 - Geant4-DNA, a project initiated by the European Space Agency to study radiation damage at the molecular level
 - Tomography and radiotherapy applications

Physics Lists

- "Reference Physics Lists" are maintained, used by major experiments, extensively validated
- Still, there is not guarantee a particular list will work very well for a particular application, so it's up to the user to perform their own validation
- Naming conventions are used to help navigate the collection of the physics lists
- And, there is the G4VUserPhysicsList does what the name suggests; the user
 must implement the two pure virtual methods ConstructParticle() and
 ConstructProcess() and other elements NB you would have to construct the
 transport part as well, set cuts etc

Stacks in Geant4

- "Urgent", "Waiting" and "PostponeToNextEvent"
- A track is popped up only from Urgent stack
- Once Urgent stack becomes empty, all tracks in Waiting stack are transferred to the Urgent stack
- The stack API allows the developer to manage allocation of tracks to stacks
- One of the goals of this design: better control of resources e.g. if specific tracks of interest don't make it, the event simulation can be cut short, or other measures taken

Multithreading (event-level)

- "CPU frequency had come to a plateau in 2005. Number of transistors you can buy per \$ is still growing. Hence, many cores."
- But, memory size per core is shrinking
- Multithreaded event-level parallelism mode: since Geant4 v10.0 (Dec 2013)
 - Taking the advantage of independence of events, many cores (threads) process events in parallel (event-level parallelism)
 - Geometry/cross-section tables are shared over threads
- Task-based event-level parallelism mode: since Geant4 v11.0 (Dec 2021)
 - Decoupling task (event loop) from thread more flexible load-balancing

Multithreading (sub-event level)

- ETA: December 2024, work in progress
- Split an event into sub-events and task them separately
- Sub-event :
 - Group of tracks of selected kinds or getting into a particular detector component
- The goal is to utilize heterogeneous hardware architectures
 - Recent studies showed that each GPU process should have strictly limited scope to achieve the desired performance

Scoring and probes

- Geant doesn't preserve any data produced at runtime by default
- The canonical way to form and preserve the data is to create a "sensitive detector"
- ...but this can be not so easy and/or an overkill in some use cases
- Geant provides built-in and customized scorers
 - e.g. *energyDeposit*, *nOfTracks* etc for the built-in scorers
 - Can be managed from the Geant command interface
- Can be linked to a "scoring mesh" created by the user or a logical volume
- Filters can be added to scorers i.e. scoring can be conditional
- The user can create probes which are "virtual cubes" and apply the scoring logic there

"Analysis"

- Somewhat of a misnomer since its a limited scope (but useful) toolkit for organizing and persisting the data produced by Geant applications, not really an analysis tool
- Allows the developer to create and fill histograms and Ntuples, and save those in a few available formats (ROOT, XML, CSV, HDF5)
- Comment: hdf5 can be a very efficient way to interface Python-based software, note that using it requires HDF5 libraries installation and Geant4 build with -DGEANT4_USE_HDF5=ON
- Users access the *g4analysis* tools via the G4AnalysisManager, a singleton class that comprises all of the functionality for data manipulation and persistence

Summary

- Geant remains in the state of active development, with ongoing effort to further improve existing functionality and add new capabilities, both in terms of physics and utilization of computing resources
- The tutorials at JLab generated materials that can be quite useful for study and reference. They do not replace the Geant4 documentation but serve as a navigation tool for exploring it