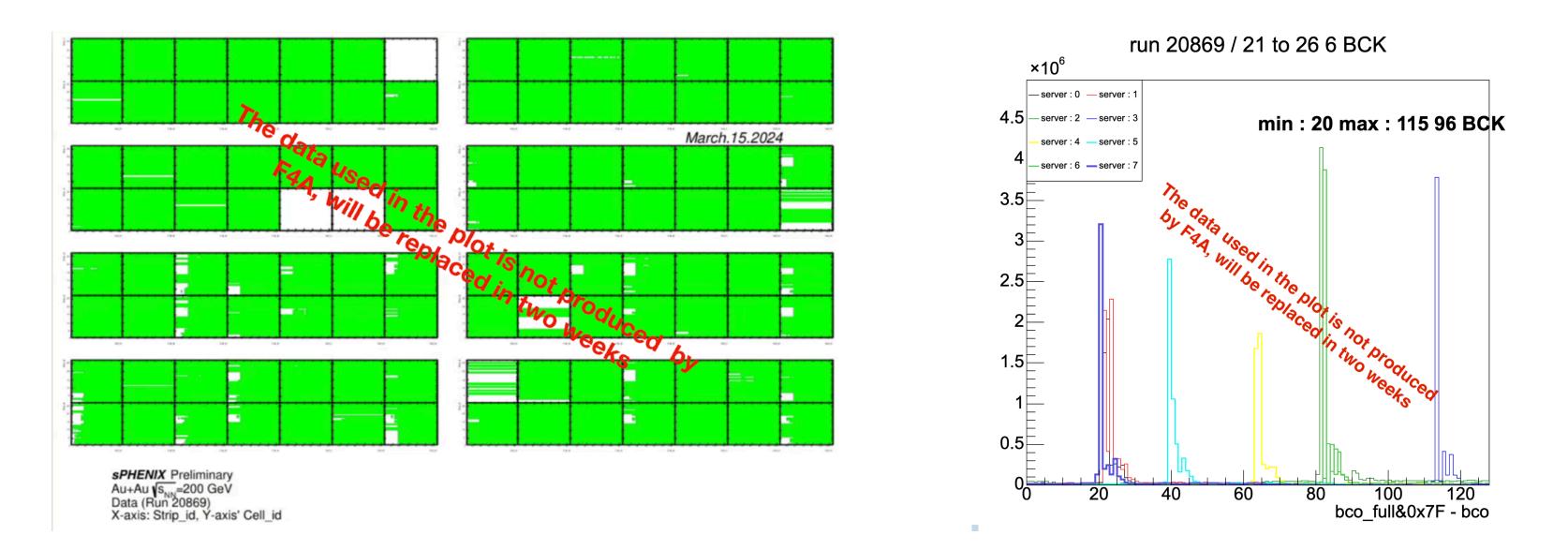
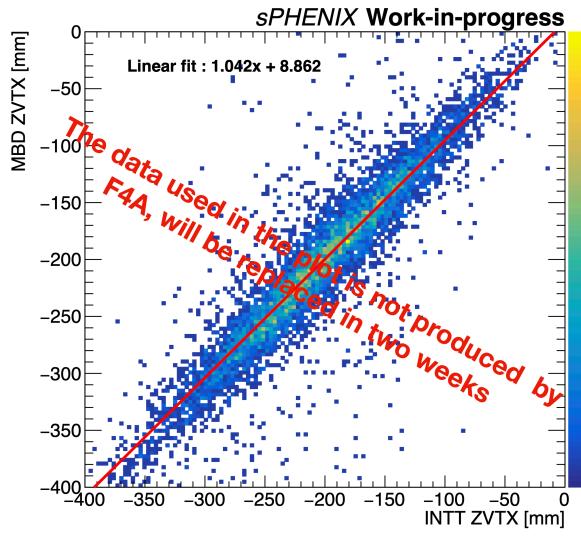
INTT - update **Cheng-Wei Shih National Central University, Taiwan** 6 6

March 27th, 2024 INTT meeting


SPHENIX SPHENIX

Analysis note / data preparation


- Link of Overleaf AN
- - Performance plots made with private gen. data are NOT acceptable as well
 - Is it true...? (It's so chaos to me...)
- two weeks
- What is the status of the data preparation?

INTT meeting

According to Cameron, ALL the plots should use the data produced by F4A framework

• Current alternative: label all the plots made by private gen. data, have to be replaced in

INTT streaming readout

• The overview slide of sPHENIX streaming readout by Jin

		sPHENIX in	sPHENIX			
		Current day-1 setup	w/ Streaming tracker			
DE	DAQ hardware	$FEE \rightarrow DAM \rightarrow EBDC$	Not Changed			
	Firmware & Software	Record 13 μs data following a trigger (one TPC drift window), which provide one beam crossing (0.1 μs) of complete collision data	Record 20 µs data following a trigger, providing 7 µs of complete collision data			
	Peak data rate	192 Gbps	288 Gbps			
E	DAQ hardware	ROC \rightarrow FEM \rightarrow DCM2 \rightarrow JSEB2 \rightarrow Server	ROC \rightarrow DAM \rightarrow EBDC New construction of DAM and EBDC following TPC production			
	Firmware & Software	Triggered readout of 1 beam crossing (0.1 μs) per trigger	Streaming readout of 7 µs of data following a trigger	0.1 GB/s, the current estimatio		
	Peak data rate	0.01 Gbps	0.8 Gbps			
XIV	DAQ hardware	$FEE \rightarrow DAM \rightarrow EBDC$	Not Changed	by the tracking group		
	Firmware & Software	Record one strobe time window of data following a trigger (5-10 µs)	Continue recording strobe time windows until accumulating at least 7 µs of complete collision data			
	Peak data rate	3 Gbps	6 Gbps			
Talked to	Jin Huang, it see	•	jenerates ~10Gbps (1	.25 GB/s) of data, according to		

the <u>sPHENIX computing plan</u>

It might be a problem for the case of 10 GB/s

INTT meeting

)n

3

INTT streaming readout

- Two possible ways in software to address/eliminate uncontrollable hot channels 1. Mask the particular "data line" on the ROC side
- - It's one functionality of ROC (but not yet been tested in FVTX) according to Jin
 - Not so necessarily to modify the code of slow control FPGA of ROC
 - INTT group doesn't have much experience playing with ROC FPGA, will need Jin's help for this, for sure
- 2. Try to play with the "Digital Control" of the chip registers
 - If we received the data from the chip, it implies that the communication b/w chip exists (according to Raul, I remember...)
 - Try to reject the two serial out channels of chip. We have NOT tried it before • We have the abundant experience on playing with the chip slow control. This test must
 - be doable

2	Digital	7:0	1	Bit 0 = Active Serial Lines (1=
	Control			0=One)
				Bit $1 = Accept$ (1=Accept Hits,
				Bit 2 = Global Inject Enable
				Bit 3 = Serial Output Order
2		1.0	1	

=Two,

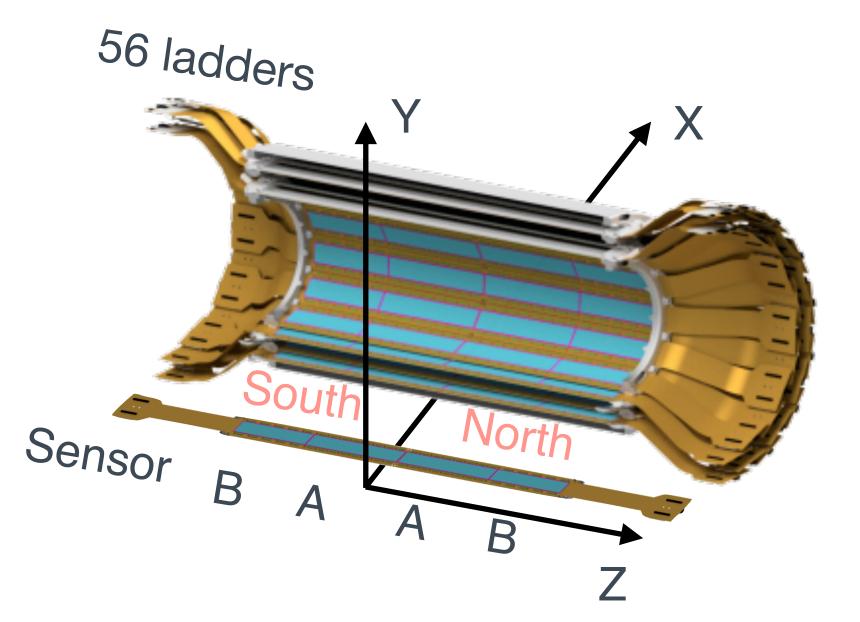
s, 0=Reject)

How should we proceed? (2)

Topics to be discussed/raised

- Where to keep the calibration plots?
 - It must be good if the calibration information can be kept in the website
 - <u>Centrality calibration web</u>
 - INTT run hit map web made by Genki
 - Proposal: expand the INTT current website ?
- News related to INTT from the software meeting in the past two weeks
 - New run list on the Github (?)
 - <u>link</u> (https://github.com/sPHENIX-Collaboration/RunList/tree/main)
 - Calibration status, link
 - Verbally reported the status of INTT geant4 implementation • They looked forward to having it as soon as possible \rightarrow for the HF simulation

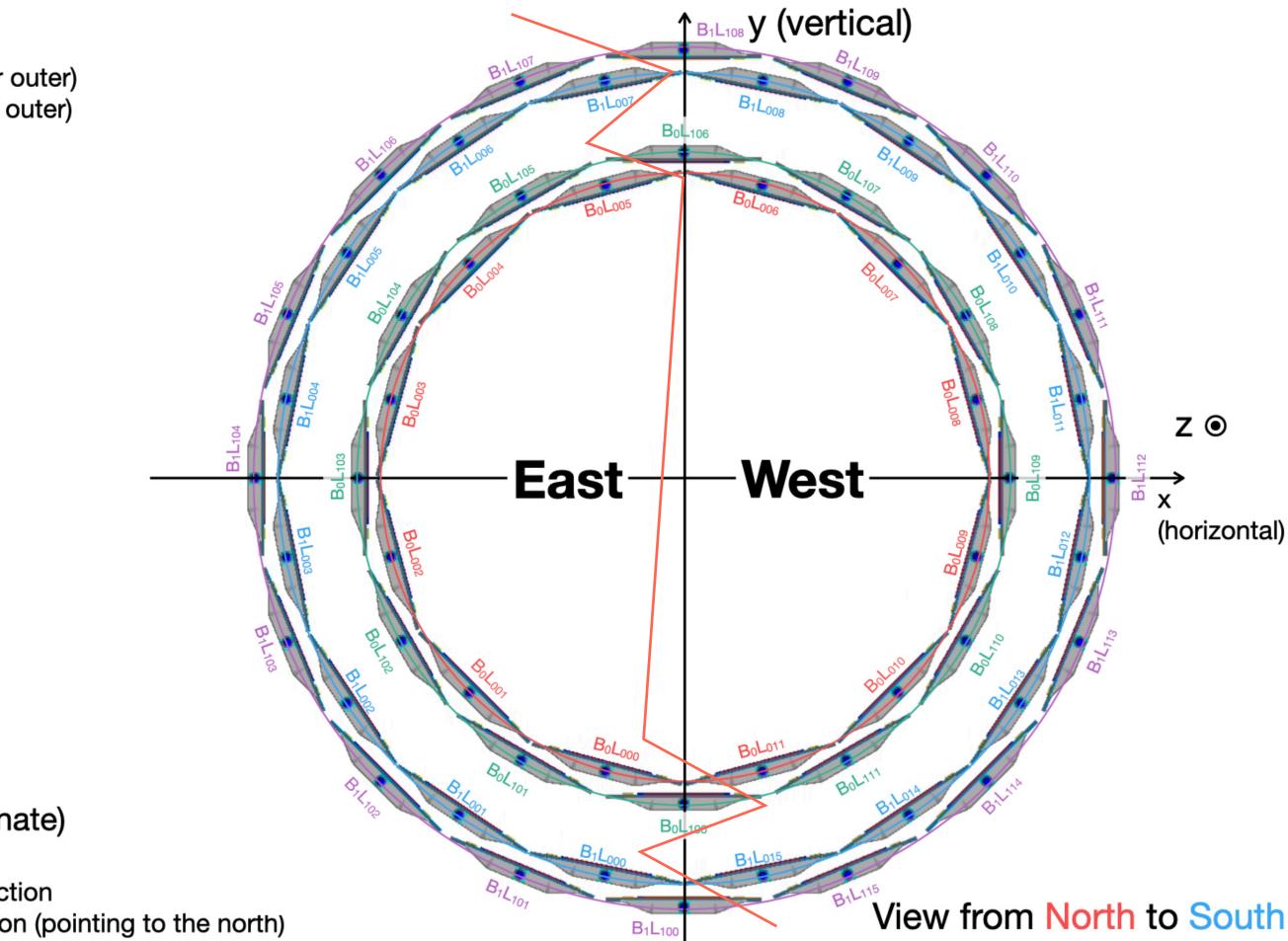
SPHE



Back up

INTT geometry

INTT: 2 sensors X 2 sides of half-ladders X 56 ladders = 224 sensors


Notation: B_xL_{yzz} x: Barrel ID (0 for inner or 1 for outer) y: Layer ID (0 for inner or 1 for outer) zz: Ladder ID (from 0 to 15)

Axis (Right-haded coordinate) x-axis: $\vec{y} \times \vec{z}$ y-axis: Vertically upward direction

INTT meeting

SPHE

z-axis: The blue beam direction (pointing to the north)

Topics to be presented/discussed/raised

- INTT geometry
- dN/dŋ analysis note, data preparation
- Performance/Physics plots data requirement?
- INTT streaming readout
- Where to keep the calibration plots?
- INTT beam test cluster size in Z axis
- News from the Software meeting

 - Calibration status, link

INTT meeting

SPHE

New run list, <u>link</u> (https://github.com/sPHENIX-Collaboration/RunList/tree/main)

