ePIC simulation status

Material scan

BIC simulation meeting

Pusan National University

Mar. 26. 2024 Jaehyeok Ryu

Overlap checking material_scan.py

- Got the script's path and execution method from Maria
- python scripts/subdetector_tests/ material_scan.py epic_brycecanyon.xml --path-r=120 --eta-min=-2.0 --eta-max=1.7 --etanbins=3701

- Crucial argument
 -c, --compact : The path to the detector design file(.xml)
- Optional arguments --path-r: Scan stop R_xy (default: 400cm) --start-point: Starting point ('0,0,0' by default) --eta-min: Minimum eta (default: -2.0) --eta-max: Maximum eta (default: 2.0) --eta-nbins: Eta bins count (default: 401) --phi: Phi angle in degrees (default: 20) --epsilon: Material scan step size (default: 0.001) --value-type :Value type (X0 or λ, default: 'X0') --detectors: Detector names (default list: 'EcalBarrelScFi, EcalEndcapN, EcalEndcapP, Solen oidBarrel, HcalBarrel, HcalEndcapN, HcalEndcap P')

Overlap checking material_scan.py

- Library import
- ThicknessCorrector
 - To fix missing first material layer issue in negative eta values (often vacuum)
 - Calculates missing thickness and adds it to path length for correction

- Main Execution Part
 - Parses user inputs(arguments)
- Loads the specified detector design file
- Scans material thickness across eta range using 'material_scan'
- Result Processing and Visualization
 - Aggregates and saves material thickness by detector and eta to CSV
 - Creates and saves graphs of material thickness distribution across eta to PDF

Overlap checking

material_scan.py

Mar25 version with epic full.xml

Mar24 version with epic_brycecanyon.xml

```
<documentation level="5">
               ## Main magnet and its field
             </documentation>
             <include ref="${DETECTOR_PATH}/compact/solenoid.xml"/>
             <include ref="${DETECTOR_PATH}/compact/fields/marco.xml"/>
   <documentation level="10">
    ## Central EM calorimetry
   </documentation>
   <include ref="${DETECTOR_PATH}/compact/ecal/forward_homogeneous.xml"/>
   <include ref="${DETECTOR_PATH}/compact/ecal/forward_insert_homogeneous.xml"/>
   <include ref="${DETECTOR_PATH}/compact/ecal/barrel_interlayers.xml"/>
   <include ref="${DETECTOR_PATH}/compact/ecal/backward_PbW04.xml"/>
   <documentation level="10">
    ## hadronic calorimetry
   </documentation>
   <include ref="${DETECTOR_PATH}/compact/hcal/lfhcal_with_space_for_insert.xml"/>
   <include ref="${DETECTOR_PATH}/compact/hcal/forward_insert.xml"/>
   <include ref="${DETECTOR_PATH}/compact/hcal/barrel_gdml.xml"/>
   <include ref="${DETECTOR_PATH}/compact/hcal/backward.xml"/>
   <include ref="${DETECTOR_PATH}/compact/hcal/backward_endcap_flux.xml"/>
   --- cb DIRC
Scanned 3701/3701 lines for -2.00 < eta < 1.70
```

No material found for detector EcalEndcapP in this scan, skipped it. No material found for detector SolenoidBarrel in this scan, skipped it. --- SweeperMag No material found for detector HcalBarrel in this scan, skipped it. jug xl> root@3f2787a9c8fd:/Users/jay.ryu/eic/Mar25Test/epic# ls --- ZDC_Crystal

```
111
112
          <documentation level="5">
113
            ## Main magnet and its field
114
          </documentation>
115
          <include ref="${DETECTOR_PATH}/compact/solenoid.xml"/>
116
          <include ref="${DETECTOR_PATH}/compact/fields/marco.xml"/>
117
137
138
        <documentation level="10">
139
         ## Central EM calorimetry
140
        </documentation>
141
        <include ref="${DETECTOR_PATH}/compact/ecal/forward_homogeneous.xml"/>
142
        <include ref="${DETECTOR_PATH}/compact/ecal/forward_insert_homogeneous.xml"/>
        <include ref="${DETECTOR_PATH}/compact/ecal/barrel_interlayers.xml"/>
143
144
        <include ref="${DETECTOR_PATH}/compact/ecal/backward_PbW04.xml"/>
145
146
        <documentation level="10">
147
         ## hadronic calorimetry
148
        </documentation>
149
150
        <include ref="${DETECTOR_PATH}/compact/hcal/lfhcal_with_space_for_insert.xml"/>
151
        <include ref="${DETECTOR_PATH}/compact/hcal/forward_insert.xml"/>
152
        <include ref="${DETECTOR_PATH}/compact/hcal/barrel_gdml.xml"/>
153
        <include ref="${DETECTOR_PATH}/compact/hcal/backward.xml"/>
154
        <include ref="${DETECTOR_PATH}/compact/hcal/backward_endcap_flux.xml"/>
 --- SolenoidBarrel
```

No material found for detector EcalEndcapP in this scan, skipped it.

No material found for detector HcalBarrel in this scan, skipped it.

jug xl> root@3f2787a9c8fd:/Users/jay.ryu/eic/shorttest/epic#

No material found for detector SolenoidBarrel in this scan, skipped it.

--- SolenoidEndcapN

--- SolenoidEndcapP

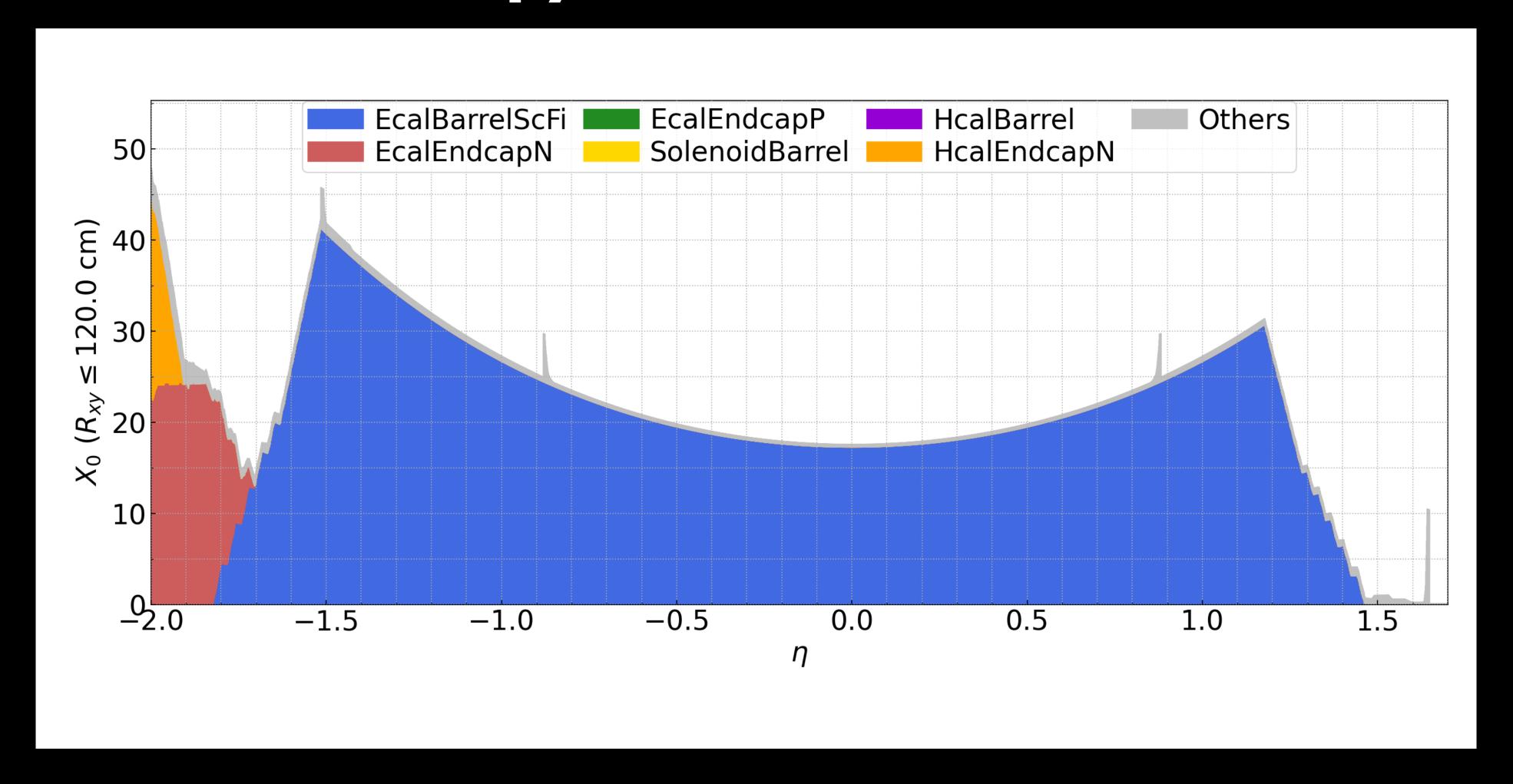
--- cb DIRC

--- VacuumMagnetElement

--- VertexBarrelSubAssembly

Scanned 3701/3701 lines for -2.00 < eta < 1.70

forward insert homogeneous.xml


```
<define>
   <documentation>
   #### Material Thickness
  </documentation>
  <constant name="EcalEndcapPInsertCoverThickness"</pre>
  <constant name="EcalEndcapPInsertAirThickness"</pre>
  <constant name="EcalEndcapPInsertPCBThickness"</pre>
  <constant name="EcalEndcapPInsertLightGuideThickness"</pre>
  <constant name="EcalEndcapPInsertScintillatorThickness"</pre>
  <documentation>

    Insert N Layers and computed Thickness

  </documentation>
  <constant name="EcalEndcapPInsertSingleLayerThickness"</pre>
    value="EcalEndcapPInsertCoverThickness +
              EcalEndcapPInsertAirThickness +
               EcalEndcapPInsertPCBThickness +
               EcalEndcapPInsertLightGuideThickness +
               EcalEndcapPInsertScintillatorThickness "
  <constant name="EcalEndcapPInsertLayer_NRepeat" value="1</pre>
```

Overlap checking

material_scan.py

Overlap checking checkOverlaps.py

- python checkOverlaps.py epic_brycecanyon.xml -v >output.txt
- Output -> ~453 MB .txt file

- Crucial argument
 -c, --compact : The path to the detector design file(.xml)
- Optional arguments

 -r, --resolution : Number of surface points for overlap checks. Default: "10000"
 - -t, --tolerance : Minimum distance in mm to report overlaps. Default: "0.1" mm
 - -v, --verbose: Activates extra output for detailed overlap information.

Overlap checking checkOverlaps.py

- python checkOverlaps.py epic_brycecanyon.xml -v >output.txt
- Output -> ~453 MB .txt file

```
AV_922!fiber_grid_2_0_2#2! fiber_vol_359#359:362 (G4Tubs)
```

?

```
Checking overlaps for volume AV 922!fiber grid 2 0 2#2!fiber vol 343#343:346 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_344#344:347 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_345#345:348 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_346#346:349 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_347#347:350 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_348#348:351 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_349#349:352 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_350#350:353 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_351#351:354 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_352#352:355 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_353#353:356 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_354#354:357 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_355#355:358 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_356#356:359 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_357#357:360 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_358#358:361 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_359#359:362 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_360#360:363 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_361#361:364 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_362#362:365 (G4Tubs) ... Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_363#363:366 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV 922!fiber_grid_2_0_2#2!fiber_vol_364#364:367 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_365#365:368 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
Checking overlaps for volume AV_922!fiber_grid_2_0_2#2!fiber_vol_366#366:369 (G4Tubs) ... OK!
Checking overlaps for volume fiber_core_vol_0:0 (G4Tubs) ... OK!
```