
Advancing Intelligent Scheduling
for Complex Large-Scale Systems

Jing Li
Department of Computer Science

Ying Wu College of Computing
jingli@njit.edu

Increasingly Large-Scale Supercomputers
e.g., Frontier has 8,699,904 combined CPU and GPU cores.

1

Increasingly Large-Scale Supercomputers
e.g., Frontier has 8,699,904 combined CPU and GPU cores.

2

Challenges in Scheduling for HPC and SC
Ø HPC systems become more complex to achieve increasing

computing capability, making it challenging for applications to
fully leverage large-scale and heterogeneous resources.

Ø Scientific computing workflows are more complex and dynamic,
with varying execution times and resource needs, which cannot
be sufficiently captured by traditional bulk-synchronous models.

Ø Manual resource allocation decisions are time-consuming and
challenging for application developers.

Ø Heuristic-based decisions often result in under-utilization of
resources and inadequate performance.

Ø The underlying scheduling problems are more intricate than
those in classical scheduling theory.

3

My Previous Journey in Scheduling Theory
Ø Support parallel applications with different performance needs

q Minimize max latency:
• Prove that FIFO is O(1+ε)-speed O(1)-competitive and develop a more

practical randomized policy with similar theoretical performance

q Minimize average latency:
• Prove that Latest-Arrival-Processor-Sharing is O(1+ε)-speed O(1)-

competitive and the more practical shortest job first is O(2+ε)-speed
O(1)-competitive

q Maximize profit of meeting individual deadlines

q Meet hard deadlines

q Meet hard deadlines + soft deadlines
q Etc.

4

Apply Reinforcement Learning-Based Approach
Ø Resource allocation for workflow graphs is a combinatorial

optimization problem with a huge search space.
Ø The capability of generalizing to unseen graphs requires learning

global topological information important for scheduling.

Ø Scaling to large graphs and complex systems is challenging.

Ø We applied deep reinforcement learning to stream processing:
q Develop a generalizable RL model for device placement [AAAI’20]

q Develop a new RL formulation for larger graphs [IPDPS’23]

5

Stream Processing
Ø Stream processing is widely used to analyze online arrival data

with high throughput and generate live results in a timely manner
Ø The computation and communications in stream processing can

be represented as a Directed Acyclic Graph (DAG)

6

Src

OP
1

OP
3

OP
4

OP
6

OP
7

OP
2

OP
5

OP
8

OP
9

OP
11

OP
13

OP
15

OP
10

OP
12

OP
14

OP
16

Sink

The nodes of the graph represent operators labeled with the amount of computation
work. The darker color of an operator illustrates higher CPU utilization. The directed
edges depict data flowing from the source to destination operators. The edge width
represents the amount of data flowing through that connection.

Device Placement for Stream Processing Graphs
Ø The main performance objective of stream processing is to

achieve high processing throughput on the available computing
devices via good resource allocation for the operators.

7

Applying RL to Device Placement
Ø Intuitively, the device prediction of one node is usually highly

influenced by the device assignments of its upstream nodes.
Ø The prediction of the resource allocation is to assign each

operator node in the graph to a device, conditioning on the
graph property and the assignments of other nodes.

8

0

0

1 0

0

1

0

1 1

2 2

Challenges for Applying RL
Ø Good allocations require globally balancing computation and

communication load à need to learn the global information of
the entire graph and the relation between devices’ assignments.

Ø Generalization to unseen graphs à need to capture the
desired properties of graph topology into the graph
representations and the representation space must be
transferable among different graphs
q Prior work: train and test on the same graph

9

0

0

1 0

0

1

0

1 1

2 2

Stream Graph Encoding

max(…)

k = 0
k = 1
k = 2

Graph Convolution Graph Embedding Graph-Aware Decoder

Fully connected

Max-pool

LSTM cell LSTM cell LSTM cell

Graph encoding

Attention layer

upstream
devices

10

Ø Our model embeds the input graph to an embedding space
using graph convolution:
q Embed both node and edge feature into nodes

q Distinguish upstream and downstream neighbors
q Aggregate neighbor embeddings

q Perform k convolutions to reach k-hop neighbors

Graph-Aware Encoder-Decoder Model
Ø Graph embedding and whole graph encoding provides global

topological information
Ø Embedding device assignments and aggregating upstream devices

further encourages the model be aware of the assignments of
the upstream nodes to help its assignment prediction

11

max(…)

k = 0
k = 1
k = 2

Graph Convolution Graph Embedding Graph-Aware Decoder

Fully connected

Max-pool

LSTM cell LSTM cell LSTM cell

Graph encoding

Attention layer

upstream
devices

RL Training using CEPSim Simulator
Ø It is infeasible to get the ground truth (optimal) allocation.

Ø We follow the RL setting, where the model makes a sequence
of decisions (i.e., our decoder) and gets delayed reward (i,e., the
throughput of the predicted graph allocation).
q We apply the apply the REINFORCE algorithm to compute the

policy gradients and learn the network parameters.
q Due to the sparsity of good resource allocations over the large

search space, for each training graph, we maintain a memory
buffer to store the good samples with high reward.

Ø DRL relies on the evaluation of numerous resource allocation
trials to learn better allocations.

Ø We use CEPSim, a simulator for cloud-based complex event
processing and stream processing system, to evaluate the
resource allocations.

12

Experiment Setup
Ø We created create a synthetic benchmark containing 3,150

graphs with various graph topology and number of operators.
Ø We compare with several baselines:

q Encoder-decoder is a prior model designed for device placements
for a single (Tensorflow) graph.

q METIS is a heuristic-based graph partitioning method.
q IBM Streams is a streaming platform used in production.

Ø Our model can automatically determine the best number of
devices to use, while METIS and IBM Streams cannot:
q METIS Oracle and IBM Streams Oracle exhaustively try out

different numbers of devices to use and take the number with the
highest throughput.

13

Evaluation Results
Ø Cumulative Distribution Function (CDF) of throughputs

14

IBM Streams: ~40% graphs have throughput < 7000
METIS: ~20% graphs have throughput < 7000
Model: ~5% graphs have throughput < 7000

Qualitative Comparison
Ø Our model outperforms other baselines by avoiding cutting the

heavy edge while balancing the workload in each partition.

15

Deficiency for Larger Graphs
Ø For large graphs, directly applying graph encoders cannot

sufficiently handle long-distance dependency and global
information needed for the joint optimization in scheduling.

16

Metis: ~40% graphs have throughput < 7500
Model: ~15% graphs have throughput < 7500

Cumulative Distribution Function (CDF) of throughputs of 300
stream processing graphs with different topologies

Leverage Theoretical Intuition
Ø Communication costs of some edges are more likely to be the

bottleneck for maximizing throughputs of large stream graphs.
Ø Such information can be captured into edge representations

without global topological structures and thus easier to learn.

Ø The coarsening-partitioning paradigm coarsens a large graph to
a smaller one that is easier to handle for a partitioning model.

17

Edge-Collapsing Prediction
Ø We formulate the graph coarsening problem as predicting

whether to collapse an edge connecting two nodes.
Ø GCN with edge encoding makes better use of the edge

information for graph encoding.

Ø Edge representation combines both node and edge information
for the edge-collapsing prediction.

18

Coarsening-Partitioning Framework

19

Curriculum Learning for Large Stream Graphs
Ø RL training directly on large graphs suffers from cold start.

Ø Two curriculum learning techniques to guide our model training
and help the model reach convergence faster:
q Curriculum based on the levels of graph sizes and device numbers
• Use the model obtained for the previous level to continue training

(i.e., fine-tuning) this model for the next level
• e.g., 100∼200 on 10 devices à 400∼500 on 10 devices à

1,000∼2,000 on 20 devices

q Heuristic-guided training signals

20

Data Set Generation
Ø The stream graphs with various sizes are generated to

resemble the topological structures of real-world applications
in stream processing systems.

Ø Three basic types of stream subgraphs (linear, branch, and fully
connected structures) are used to recursively generate more
complicated processing logic, such as linear chains, loops, trees,
and multi-stages.

21

Evaluation Results

22

Throughput Cumulative Distribution Function (CDF) under our approach
and various baseline methods in settings with 100∼200 nodes per graph

Evaluation Results

23

Throughput Cumulative Distribution Function (CDF) under our approach
and various baseline methods in settings with 400∼500 nodes per graph

Evaluation Results

24

Device usage histogram for data with 400∼500 operators per graph and
10 devices.

Evaluation Results

25

Model trained by data with 400∼500 operators per graph and 10 devices,
while evaluated by data with 1000∼2000 operators per graph and 20 devices.

Lessons Learned
Ø Resource allocation for unseen workload is a combinatorial

optimization problem, which is challenging for training the
model and searching for optimal allocations.

Ø Off-the-shelf machine learning models do not work well, so we
must incorporate the theoretical scheduling intuitions into
problem formulation and model design.

Ø Model training requires huge training data, but obtaining the
actual performance of a workload given a specific allocation is
time-consuming and costly.

26

Develop an Intelligent Scheduling Framework
Ø Design a tree-search-based approach to find high-quality

resource allocations and distill the knowledge into policy.
Ø Devise deep learning-based surrogate models for fast evaluation

of the quality of allocations without executing workflows.

Ø Develop active learning and curriculum learning strategies to
guide the acquisition and usage of additional real execution data
to enhance accuracy of surrogate model
and performance of distilled policy.

27

Tree-Search-Based Approach
Ø We have applied the tree-search-based approach on a circuit

design task and achieved success [ICCAD’21].
Ø For scheduling, how to design the tree structure to sufficiently

capture the semantic of topologies for efficient exploration?

28

0

0.2

0.4

0.6

0.8

1

45 135 225 315 405

A
v
g
er

ag
e

R
ew

ar
d

Number of Queries

Random Search (RS)

Genetic Search (GS)

UCT-DP

Neural-Network-Based Surrogate Model
Ø We have developed a graph-transformer-based surrogate model

for a circuit design task and achieved success [DAC’24].
Ø For scheduling, how to structure the model to capture the

important scheduling information underlying diverse
topologies?

29

Scheduling in HPC and Supercomputers
Ø Different levels of scheduling and resource allocations

q Allocate resources to multiple workflows

q Distribute workload of each workflow on its allocated resources

Ø Different performance objectives and workload/system
characteristics
q Minimize latency, meet deadline, minimize energy consumption,

resilience considerations, data storage constraints, etc.

q Heterogenous platforms, data locality, etc.

30

Thank you

