# Effective denoising diffusion probabilistic models for fast and high fidelity whole-event simulation in high-energy heavy-ion experiment

Yeonju Go<sup>a</sup>, Dmitrii Torbunov<sup>a</sup>, Jin Huang<sup>a</sup>, Yihui Ren<sup>a</sup>, Yi Huang<sup>a</sup>, Tim Rinn<sup>b</sup>

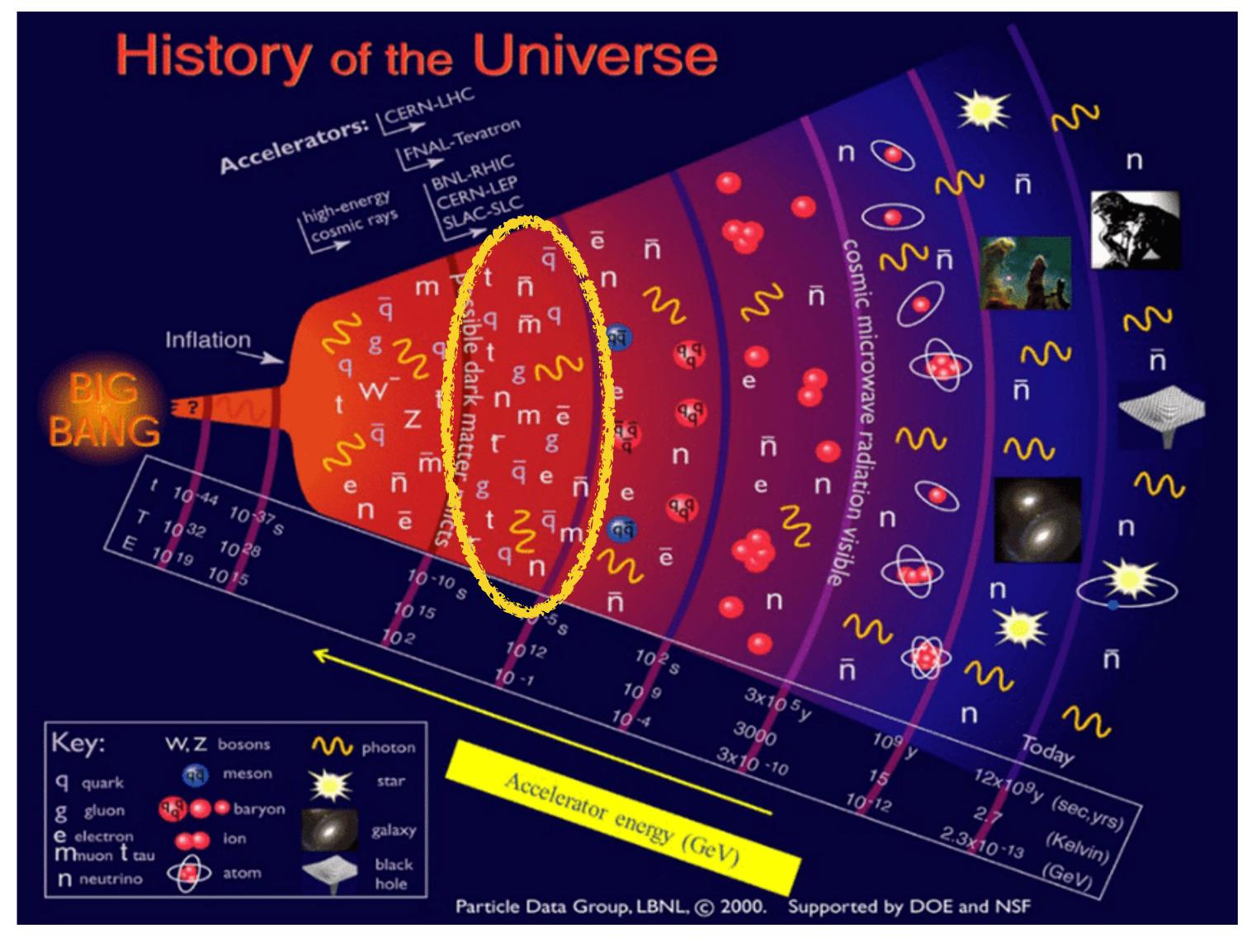
a: Brookhaven National Laboratory

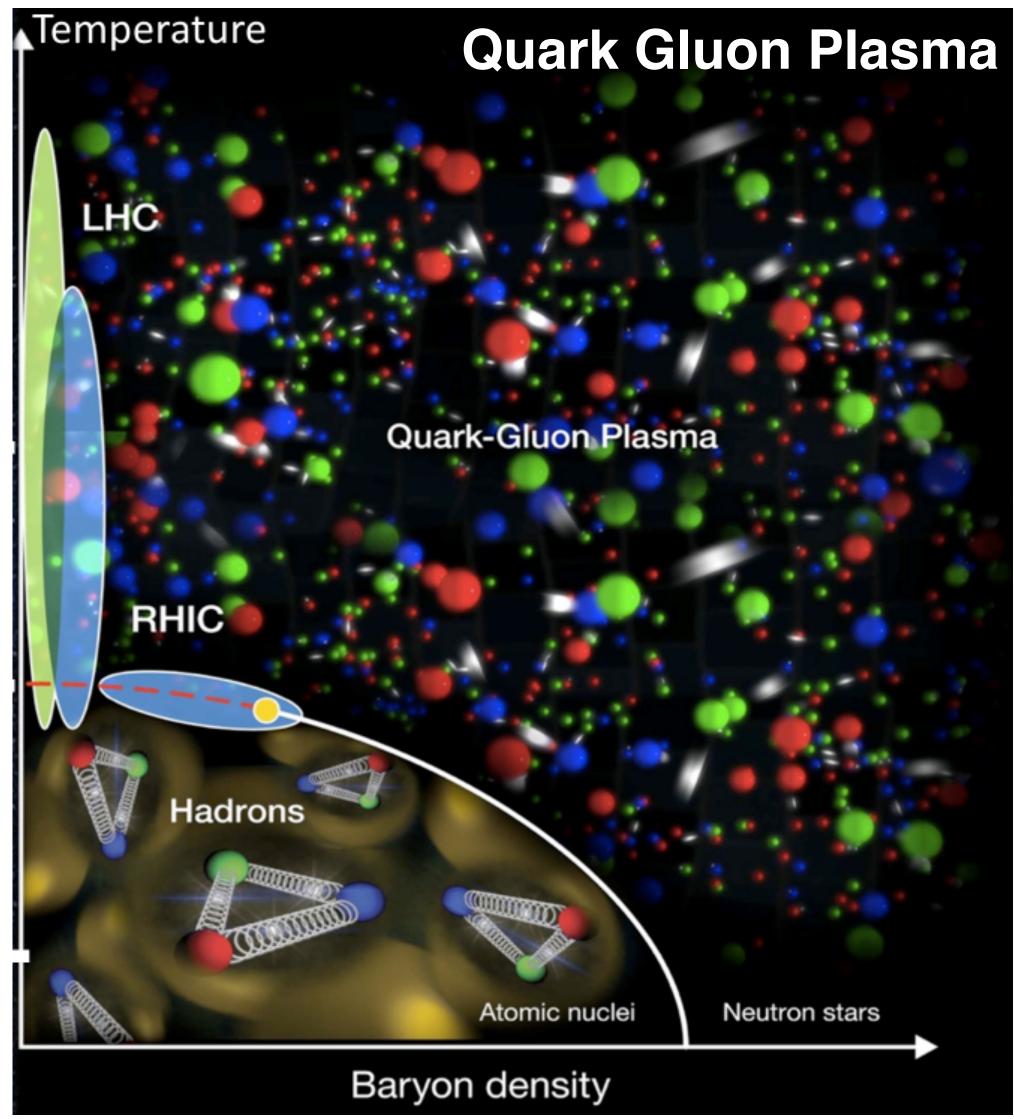
b: Los Alamos National Laboratory

BNL Physics 8th Joint Meeting on AI/ML Apr. 3, 2024



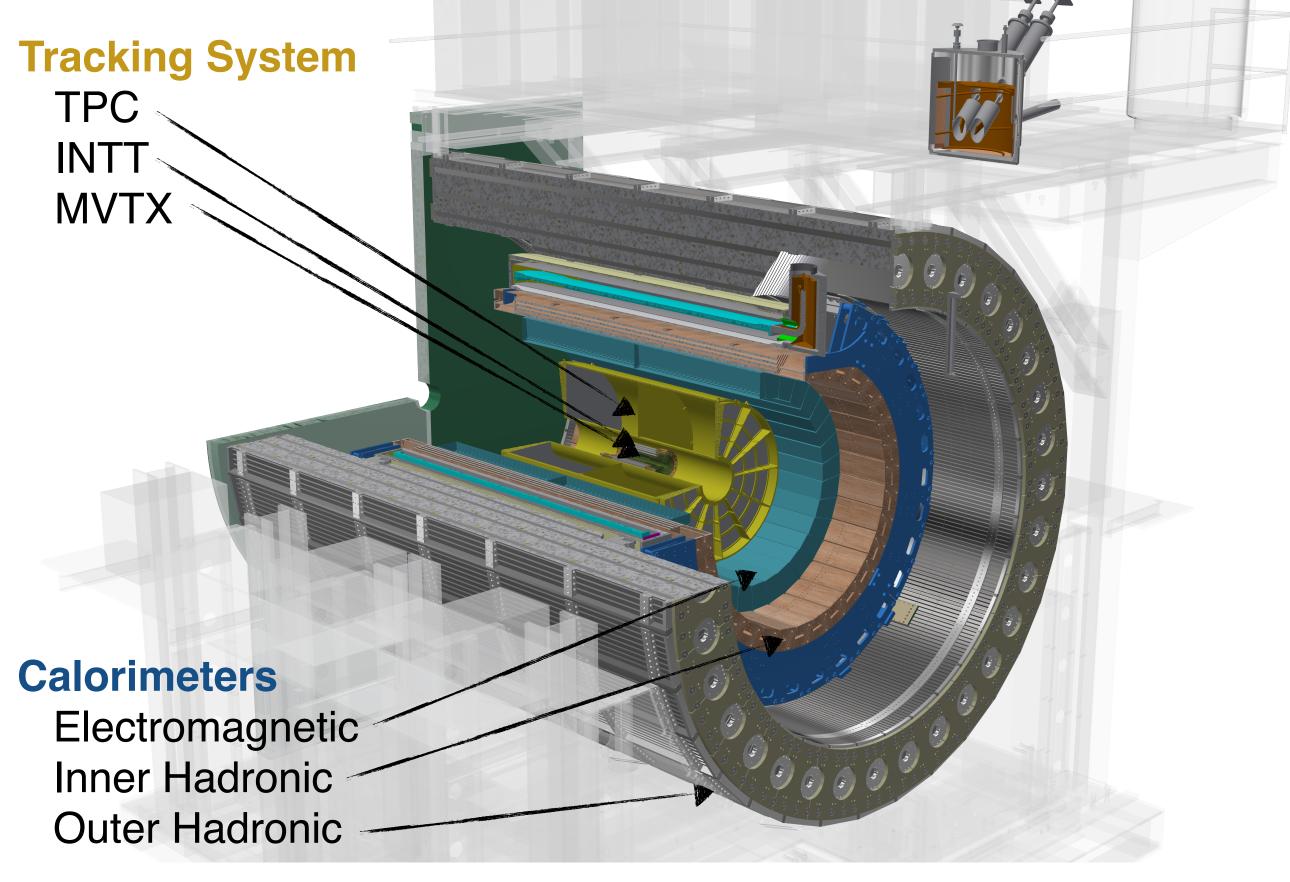
## Early Universe and Quark Gluon Plasma





#### sPHENIX Detector at RHIC

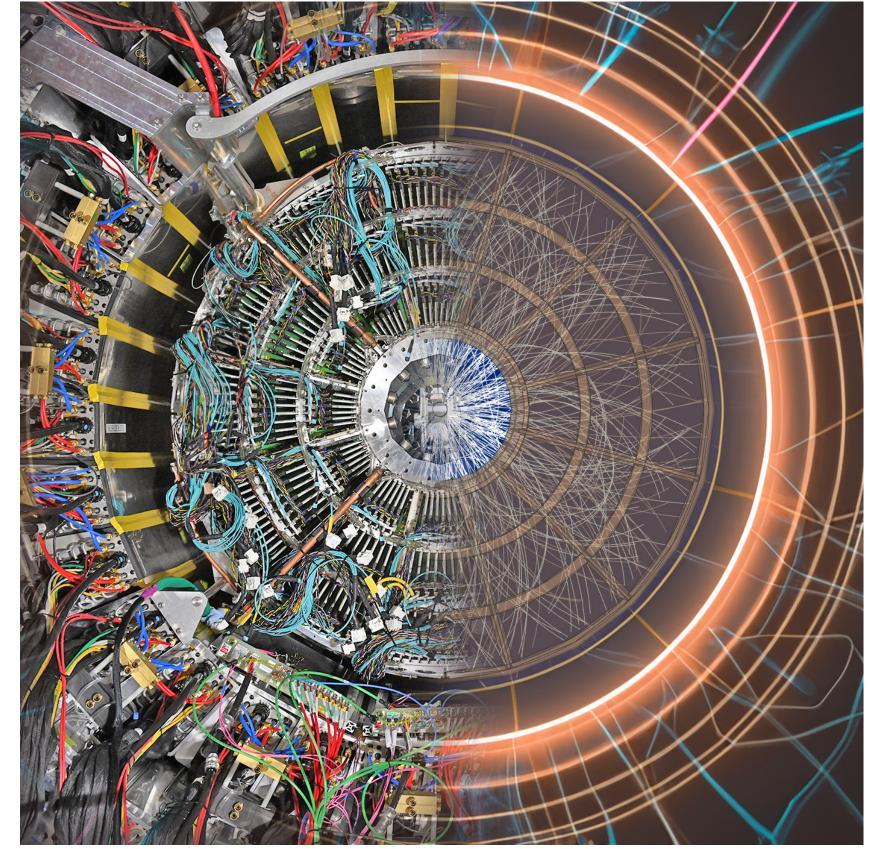




- Data taking began last year!
- High-precision tracking system + Hermetic Electromagnetic & Hadronic calorimeters

#### Simulations of Relativistic Heavy Ion Collisions

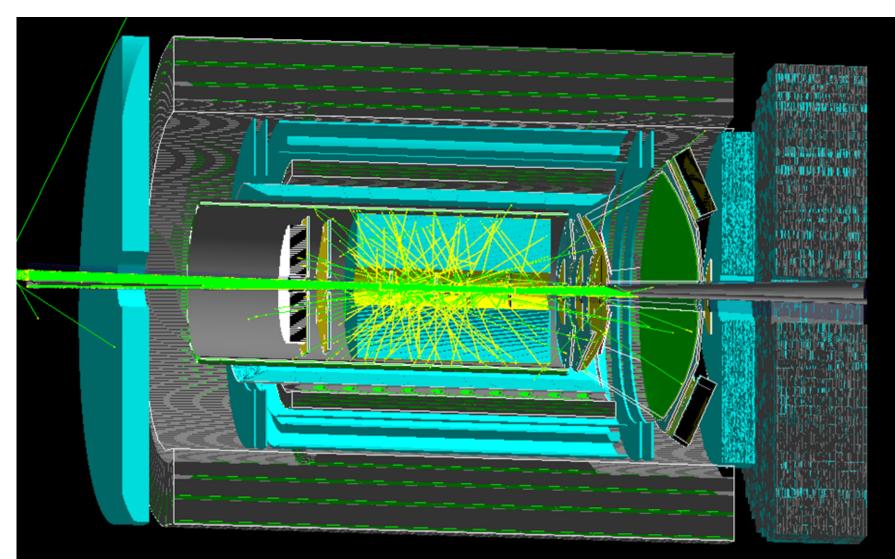
- O(1000) particles in one nuclear collision event
  - + thousands shower steps per particle
  - → Simulation of the interaction of particles with detectors is high complexity and computationally intensive work

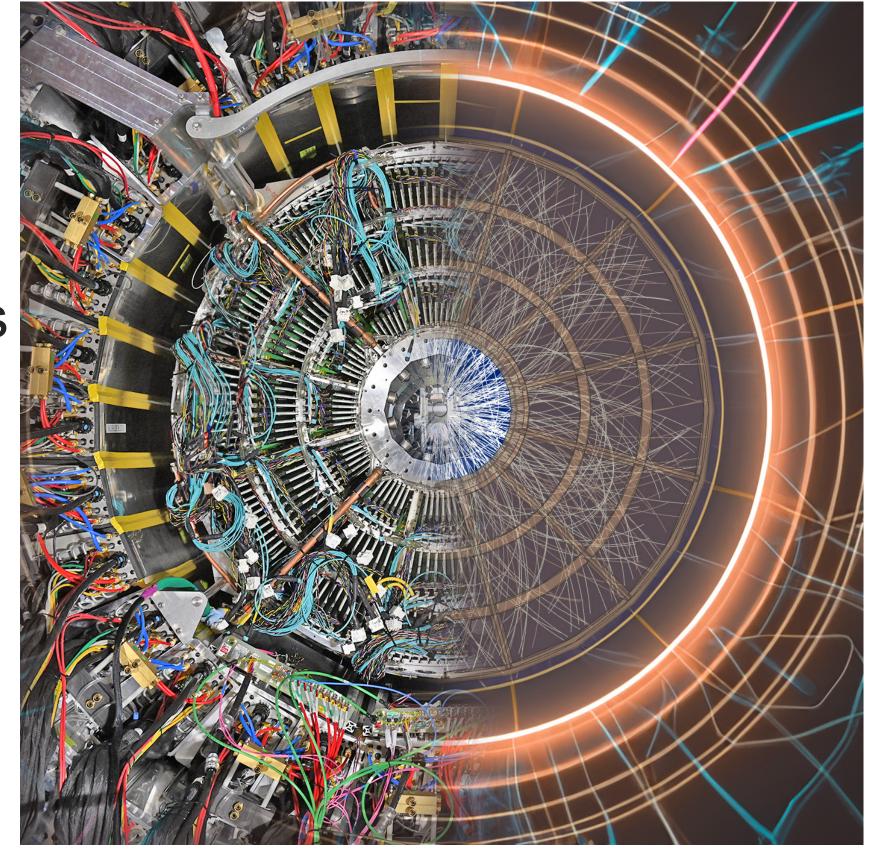


sPHENIX TPC

#### Simulations of Relativistic Heavy Ion Collisions

- O(1000) particles in one nuclear collision event
  - + thousands shower steps per particle
  - → Simulation of the interaction of particles with detectors is high complexity and computationally intensive work
- Electron-lon Collider will need a large amount of simulations of full detector with both physics and machine background

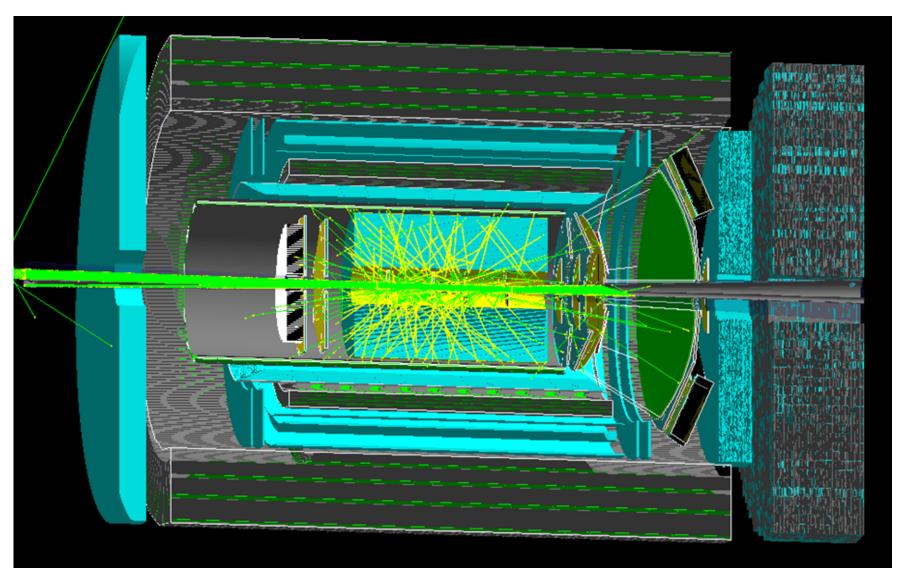


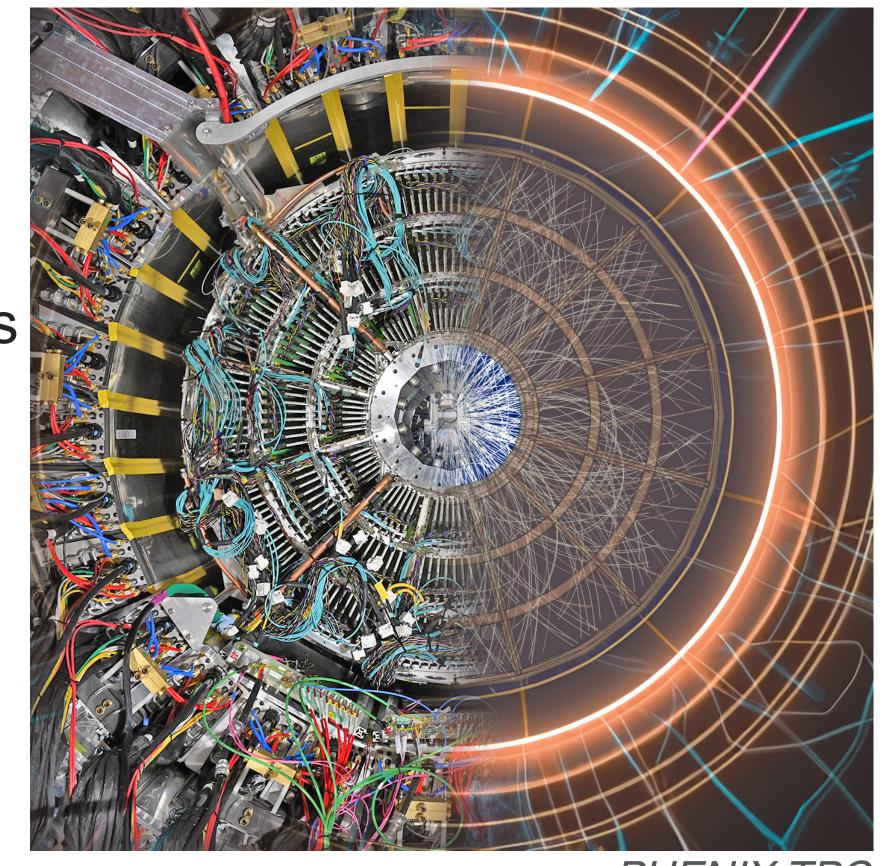


sPHENIX TPC

#### Simulations of Relativistic Heavy Ion Collisions

- O(1000) particles in one nuclear collision event
  - + thousands shower steps per particle
  - → Simulation of the interaction of particles with detectors is high complexity and computationally intensive work
- Electron-lon Collider will need a large amount of simulations of full detector with both physics and machine background
- ML can speed up and produce large amount of the heavy ion event simulations!





**SPHENIX TPC** 

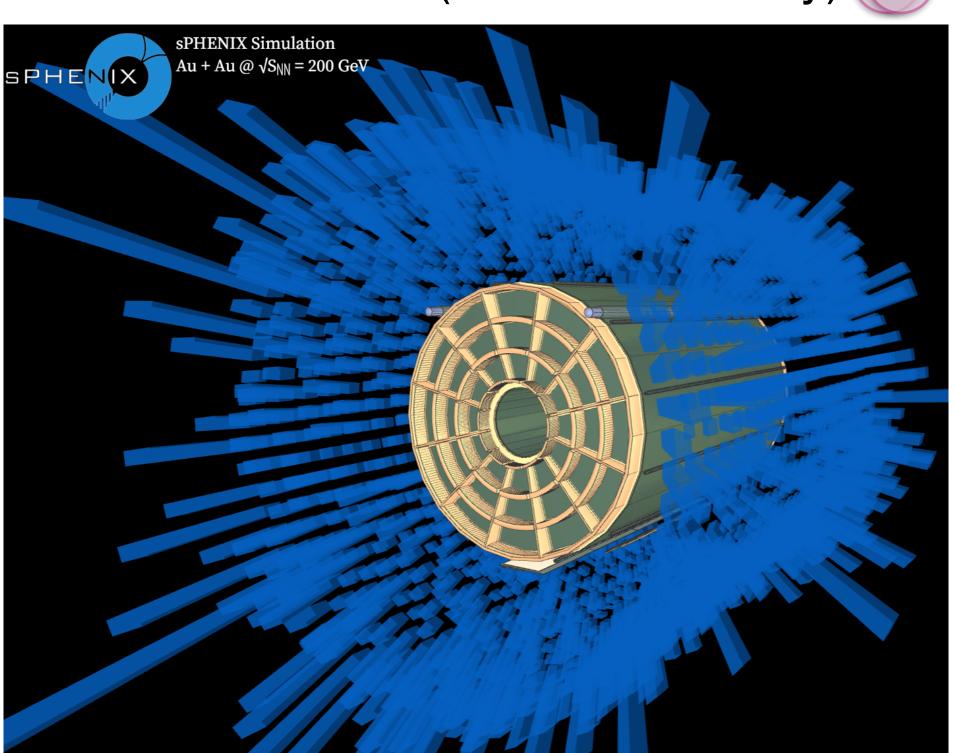
We introduce *full detector whole-event ML simulations* for heavy ion collisions

EIC CDR

## Heavy Ion Collision Event

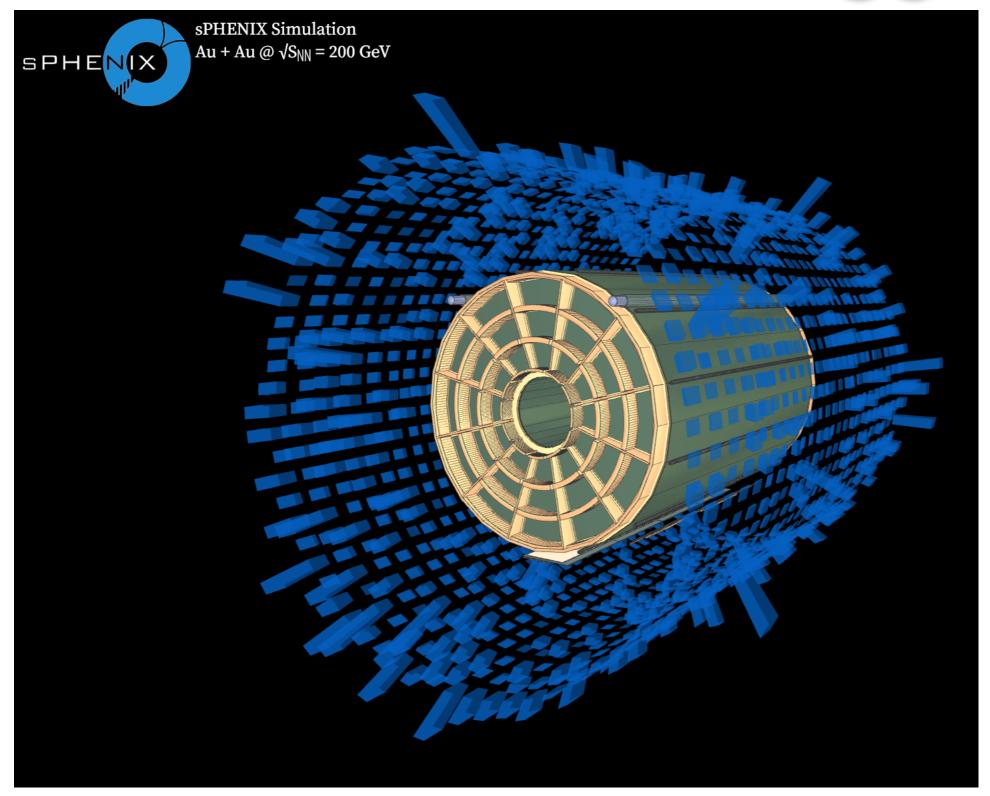
- **HIJING** Monte Carlo event generator for Au+Au collisions at  $\sqrt{s_{
  m NN}}$ =200 GeV
- Geant4 full detector simulation with the sPHENIX geometry

Head-on collision (0-10% Centrality)

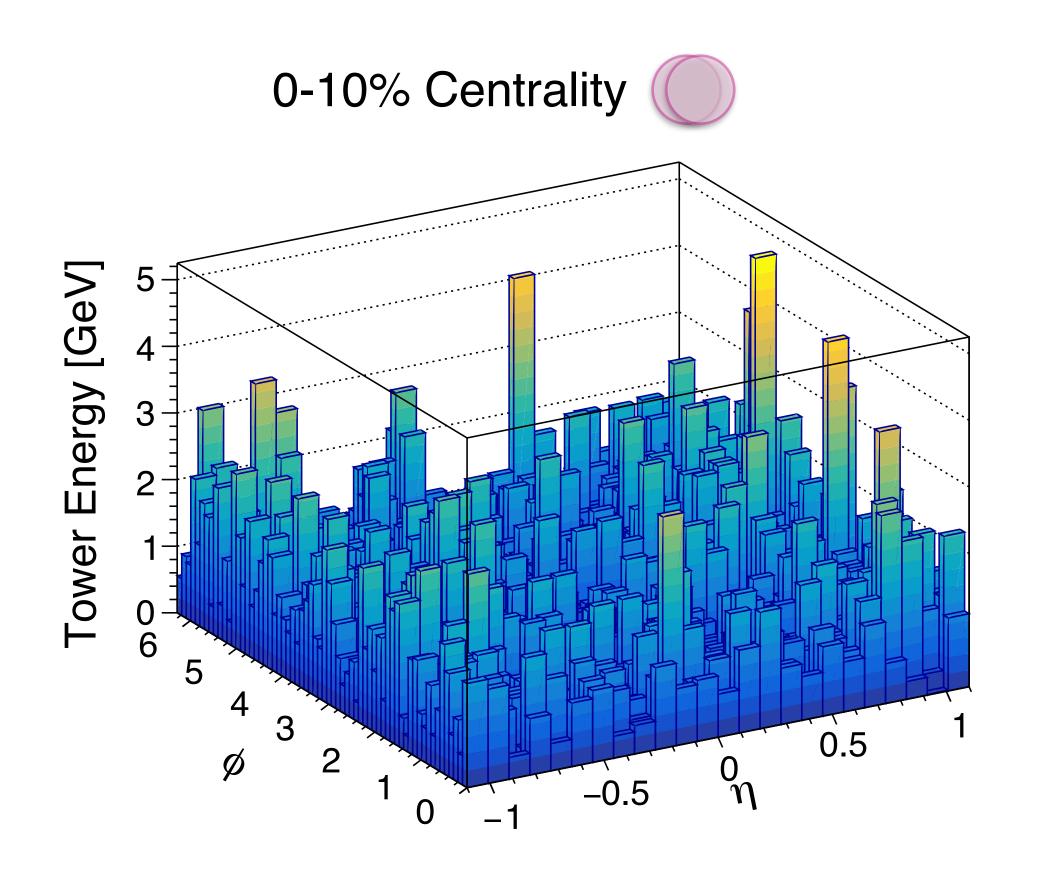


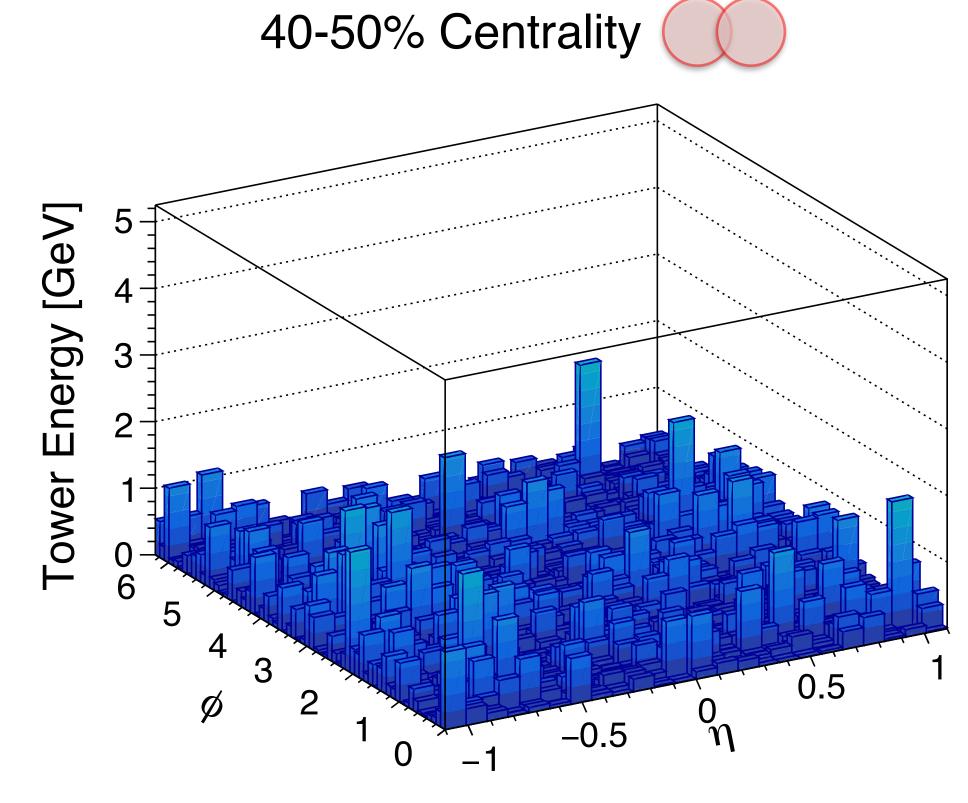
Side collision (40-50% Centrality)



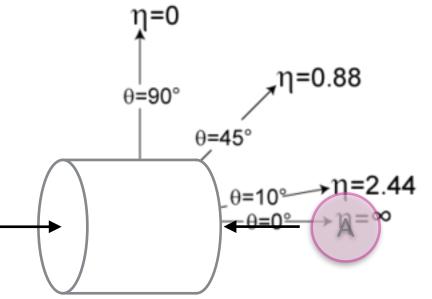


#### **Tower Distributions**





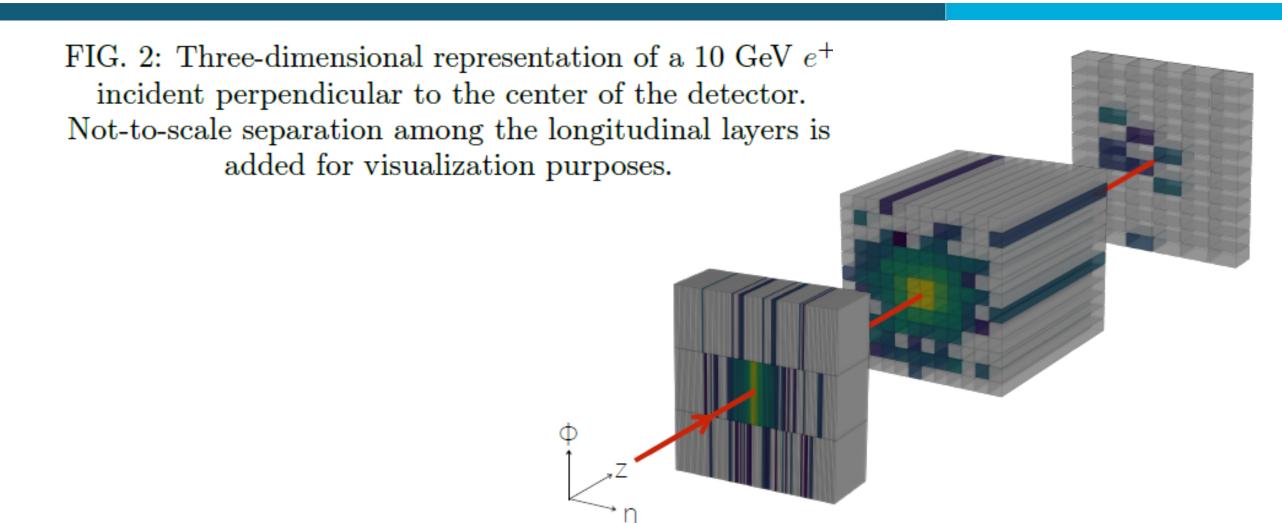
- Full calorimeter towers (Electromagnetic + Inner hadronic + Outer hadronic)
  - $\rightarrow$  -1.1 <  $\eta$  < 1.1, 0 <  $\phi$  < 2 $\pi$
  - $\rightarrow$  (24 x 64) bins in  $(\eta, \phi)$



#### **Generative Al**

Generative Adversarial Networks (GAN)

→ actively used in high energy physics (e.g. arXiv:1712.1032, arXiv:2209.07559, EPJC 80 (2020) 688, arXiv:2210.14245)

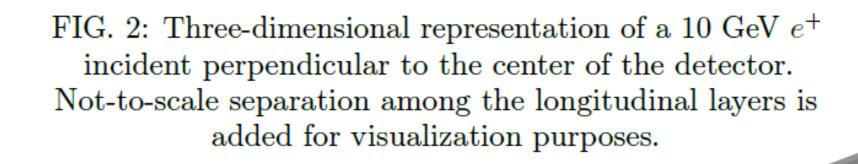


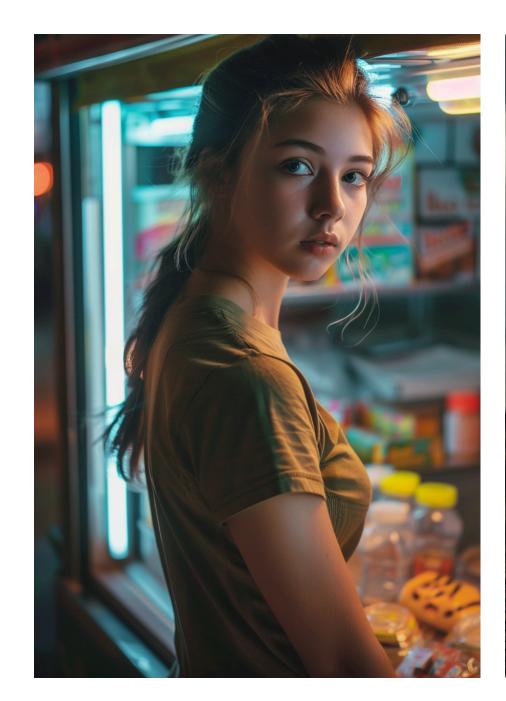
#### Generative Al

Generative Adversarial Networks (GAN)

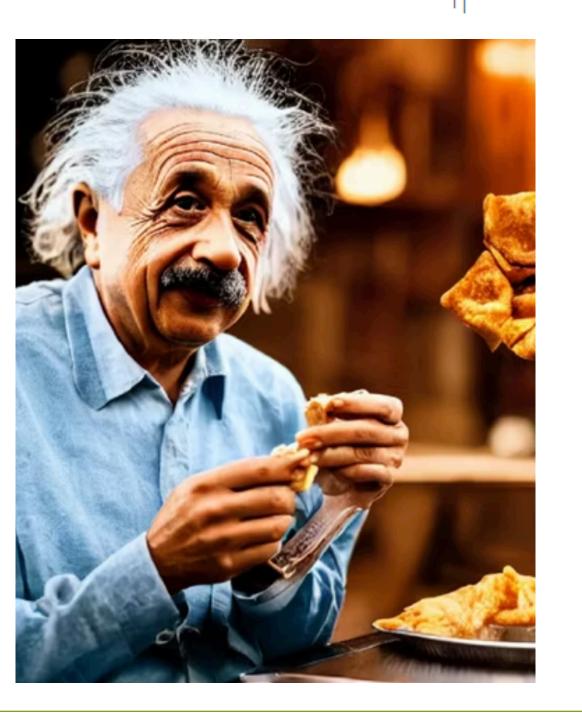
→ actively used in high energy physics (e.g. arXiv:1712.1032, arXiv:2209.07559, EPJC 80 (2020) 688, arXiv:2210.14245)

 Diffusion Models: text-to-image generation in industry (e.g. StableDiffusion, Midjourney, Dalle-2)



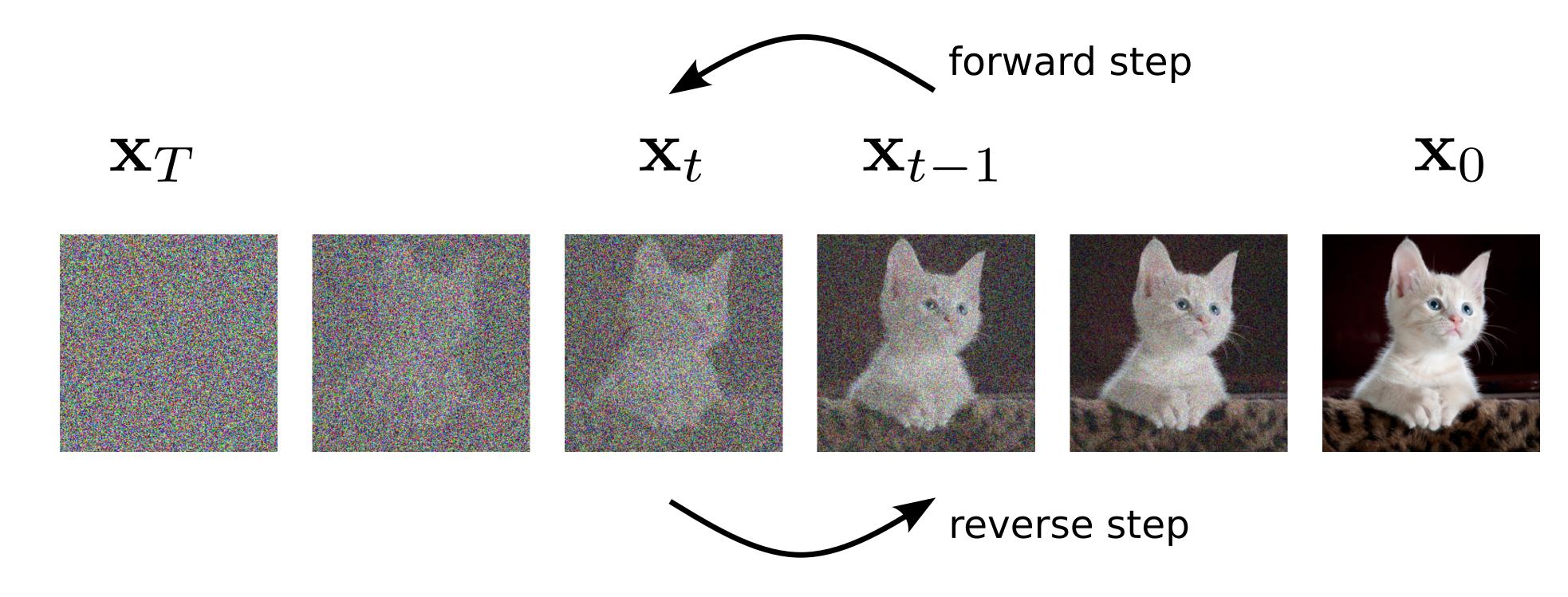






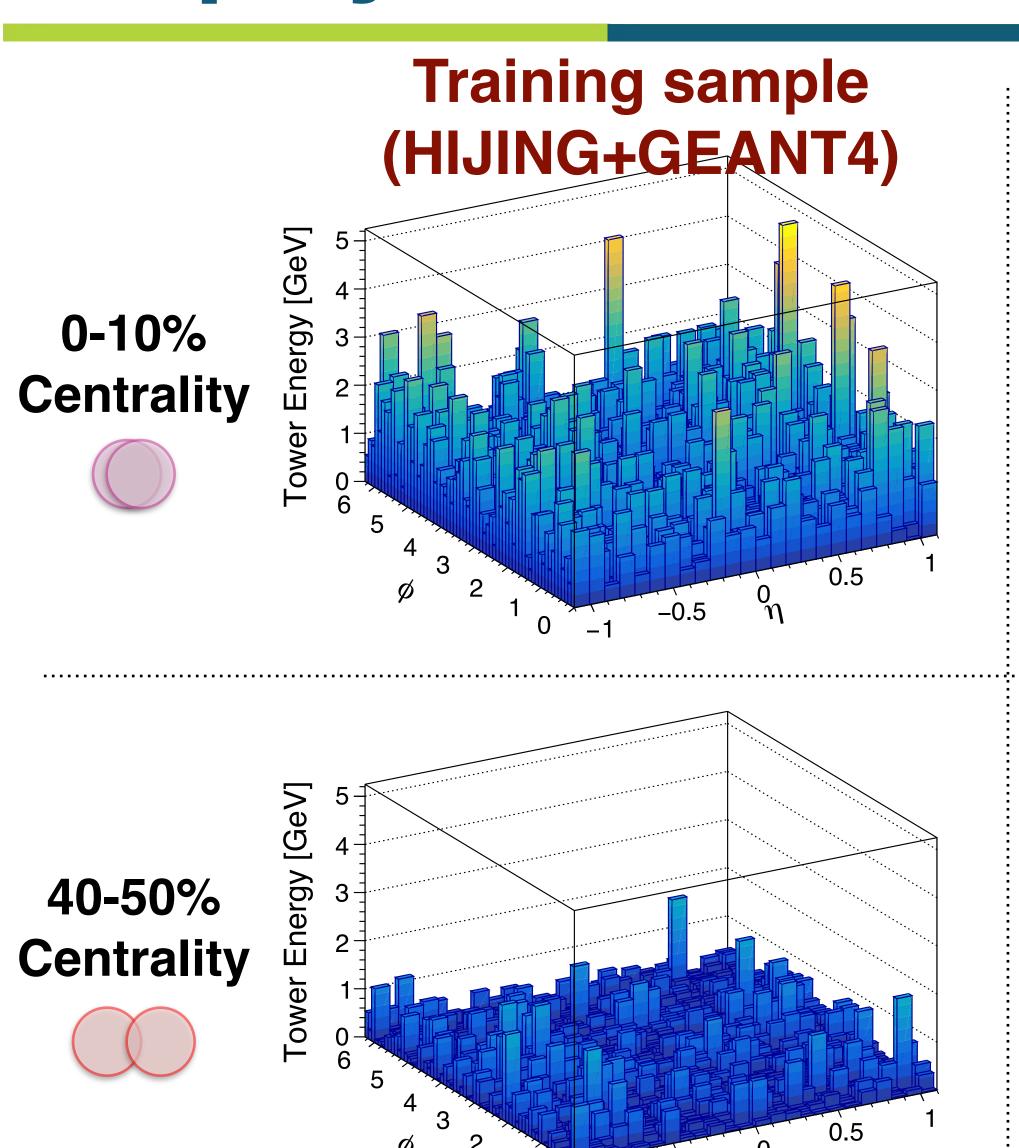
# Denoising Diffusion Probabilistic Model (DDPM)

- DDPM provides high quality data from random noise
- Forward process: add random gaussian noise
- Reverse process: use neural network and generate data
- In real application, O(1,000) steps are used

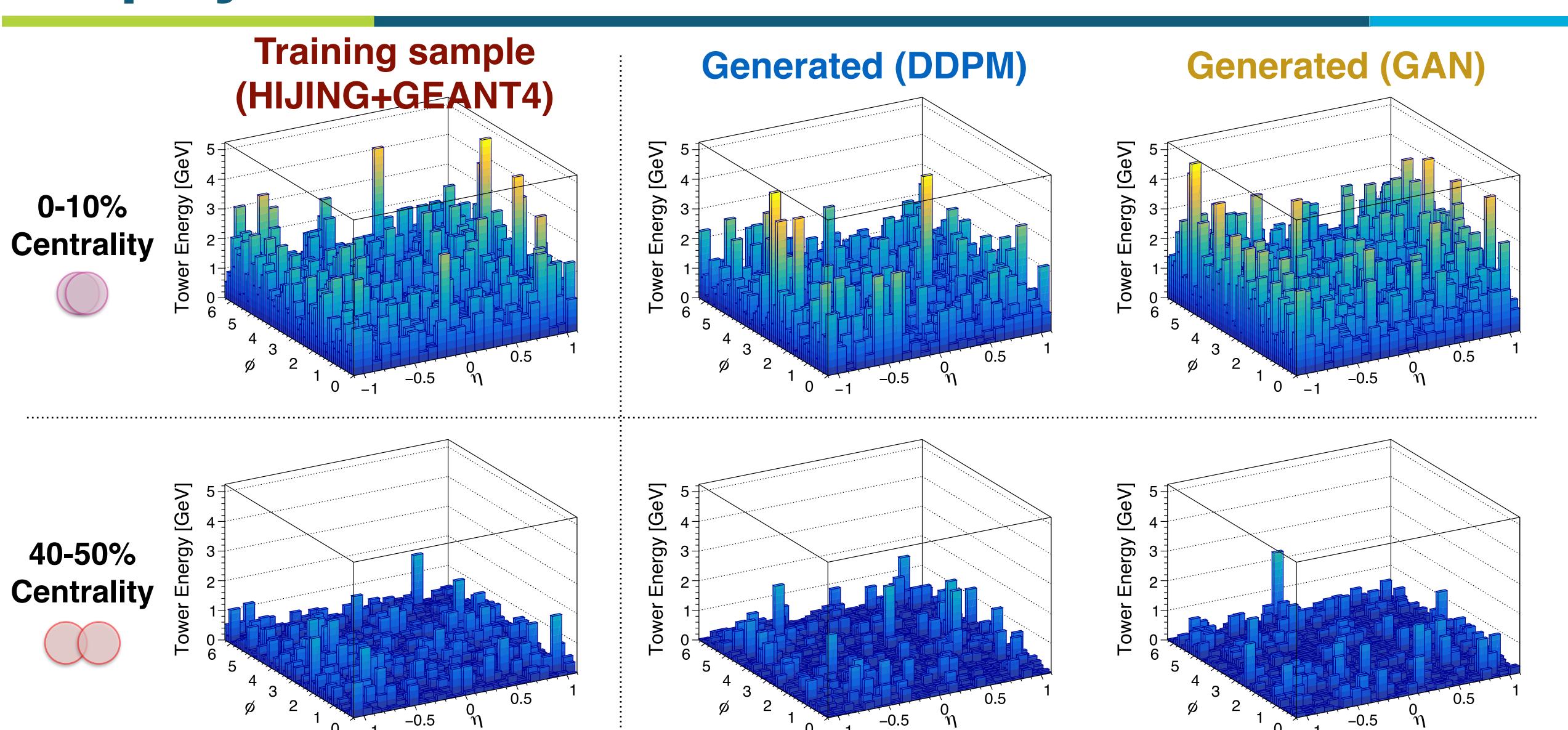


## Display of Generated Events

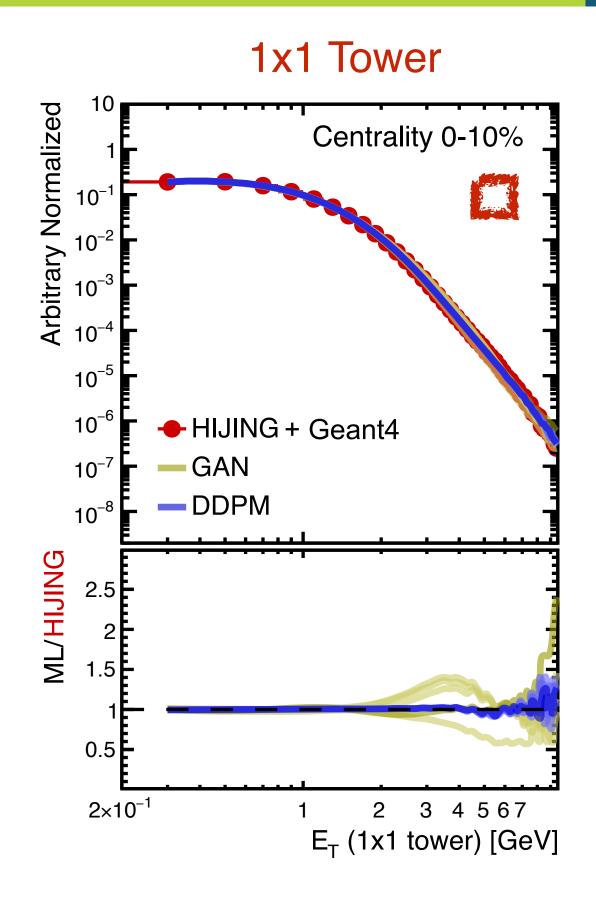
-0.5



#### Display of Generated Events

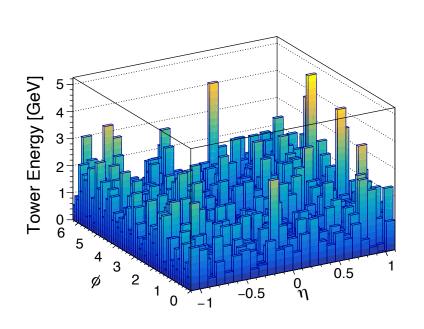


# Performance: Transverse Energy (0-10%)

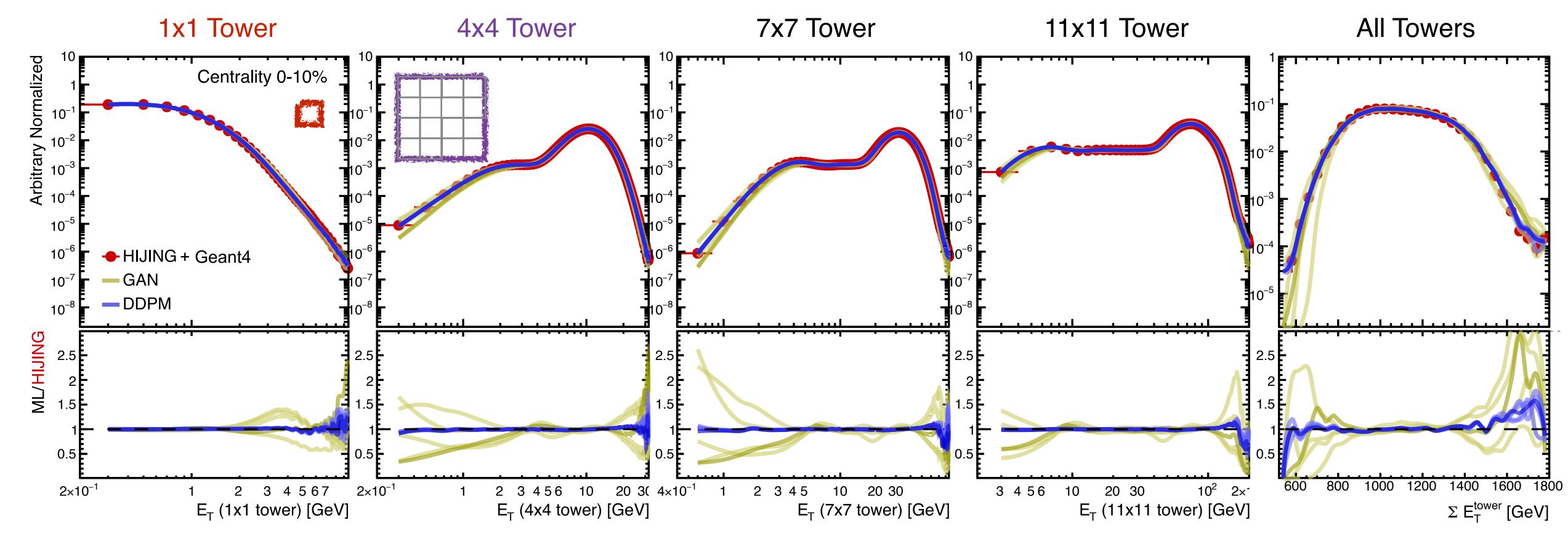


4x4 Tower 7x7 Tower 11x11 Tower All Towers

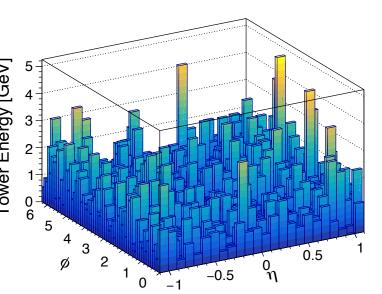
- Each model is retrained 5 times with different random seeds
- HIJING+Geant4 used as training data (600k events) and testing data (100k events)
- Both DDPM and GAN reproduce the data distribution where the data are abundant
- DDPM outperforms GAN in overall distribution w/ great stability and accuracy



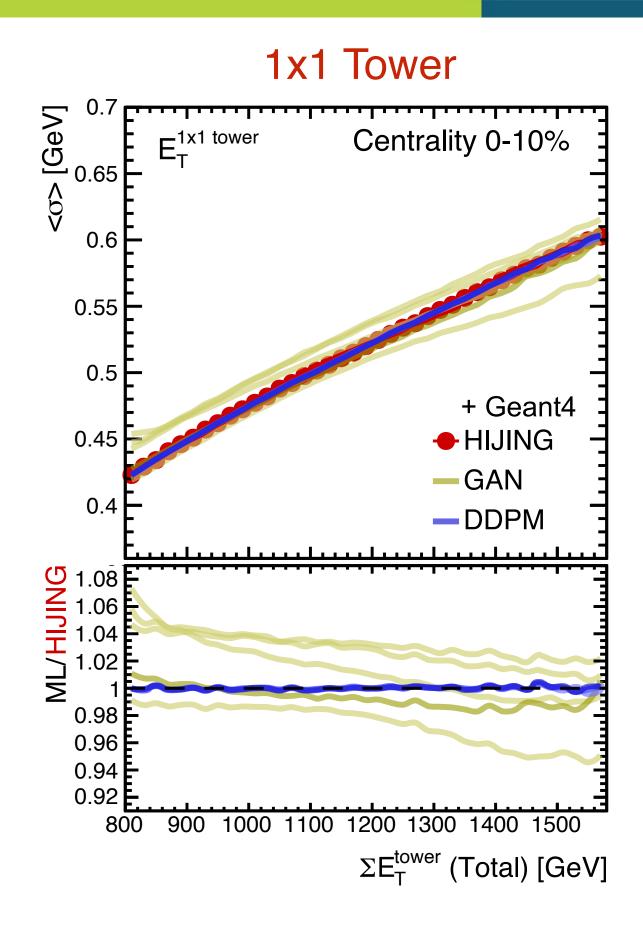
# Performance: Transverse Energy (0-10%)



- Each model is retrained 5 times with different random seeds
- HIJING+Geant4 used as training data (600k events) and testing data (100k events)
- Both DDPM and GAN reproduce the data distribution where the data are abundant
- DDPM outperforms GAN in overall distribution w/ great stability and accuracy

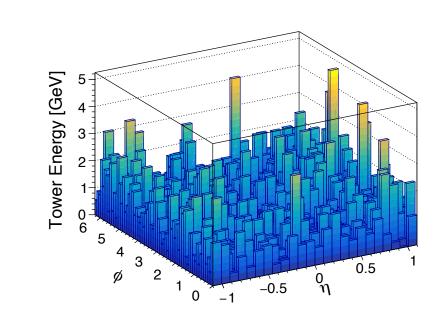


#### Performance: Transverse Energy Fluctuation (0-10%)

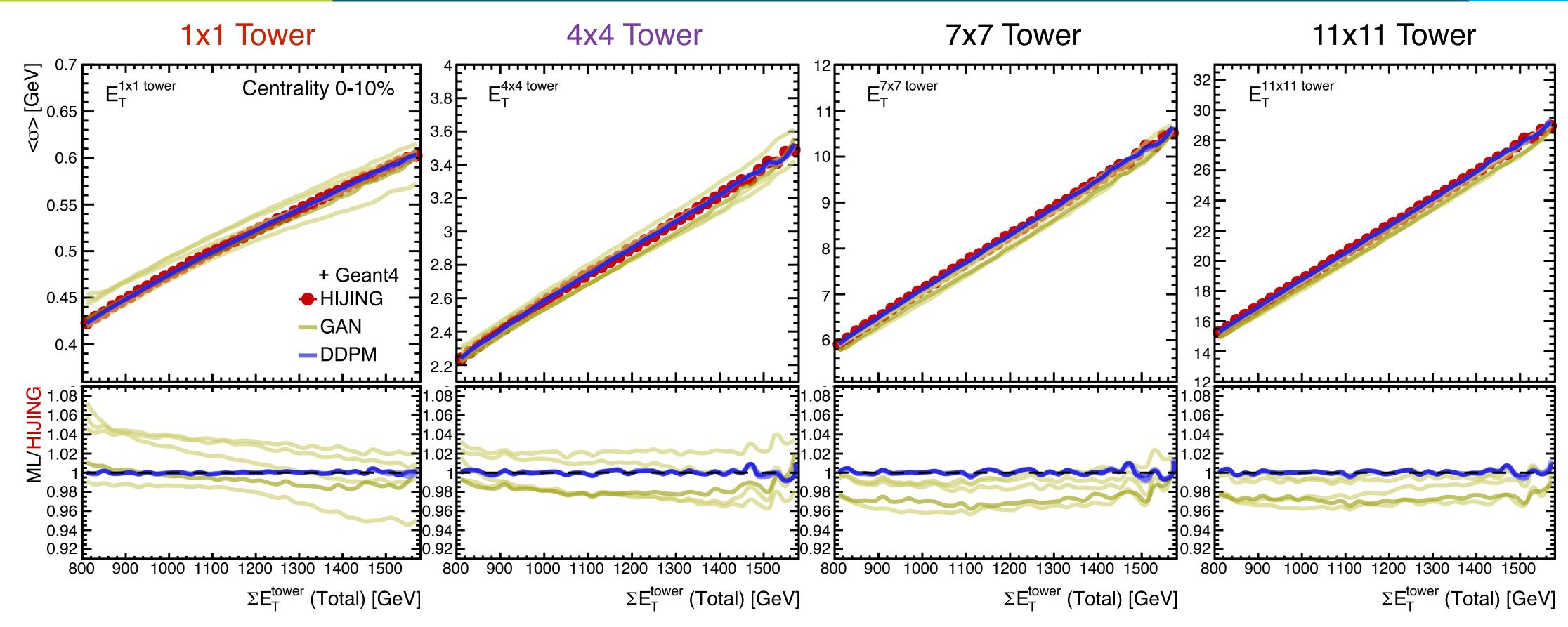


4x4 Tower 7x7 Tower 11x11 Tower

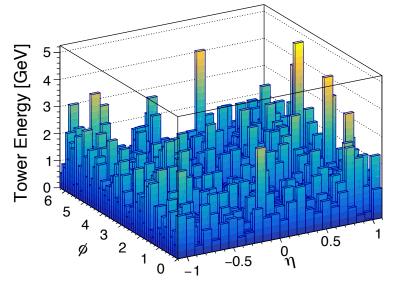
- GAN fails to describe fluctuation
- DDPM outperforms GAN w/ great stability, a few percent-level accuracy



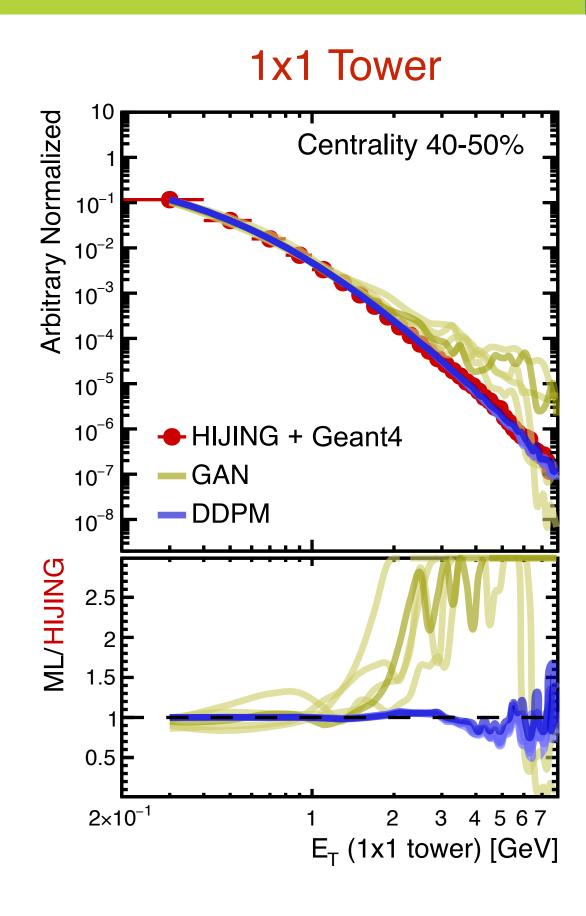
#### Performance: Transverse Energy Fluctuation (0-10%)



- GAN fails to describe fluctuation
- DDPM outperforms GAN w/ great stability, a few percent-level accuracy

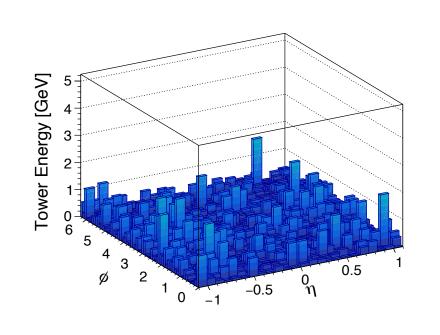


# Performance: Transverse Energy (40-50%)

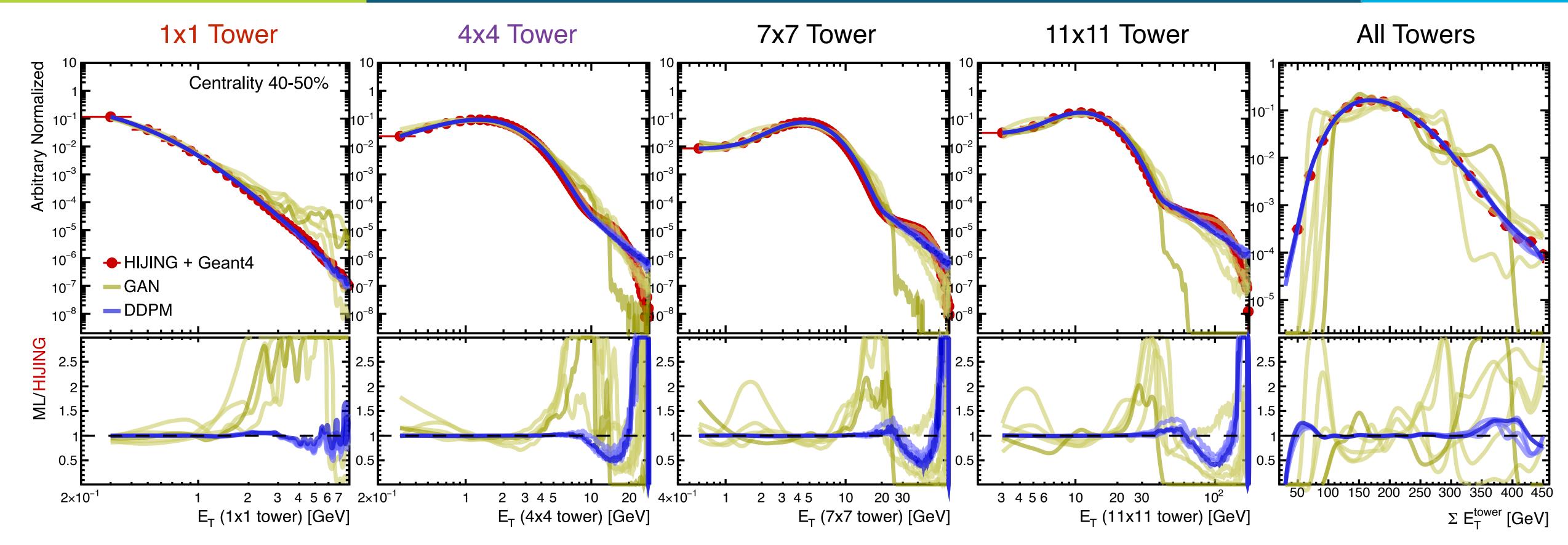


4x4 Tower 7x7 Tower 11x11 Tower All Towers

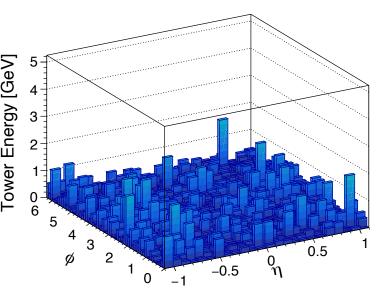
- DDPM outperforms GAN
  - ⇒ great stability, good agreement with HIJING+G4 at high probability region



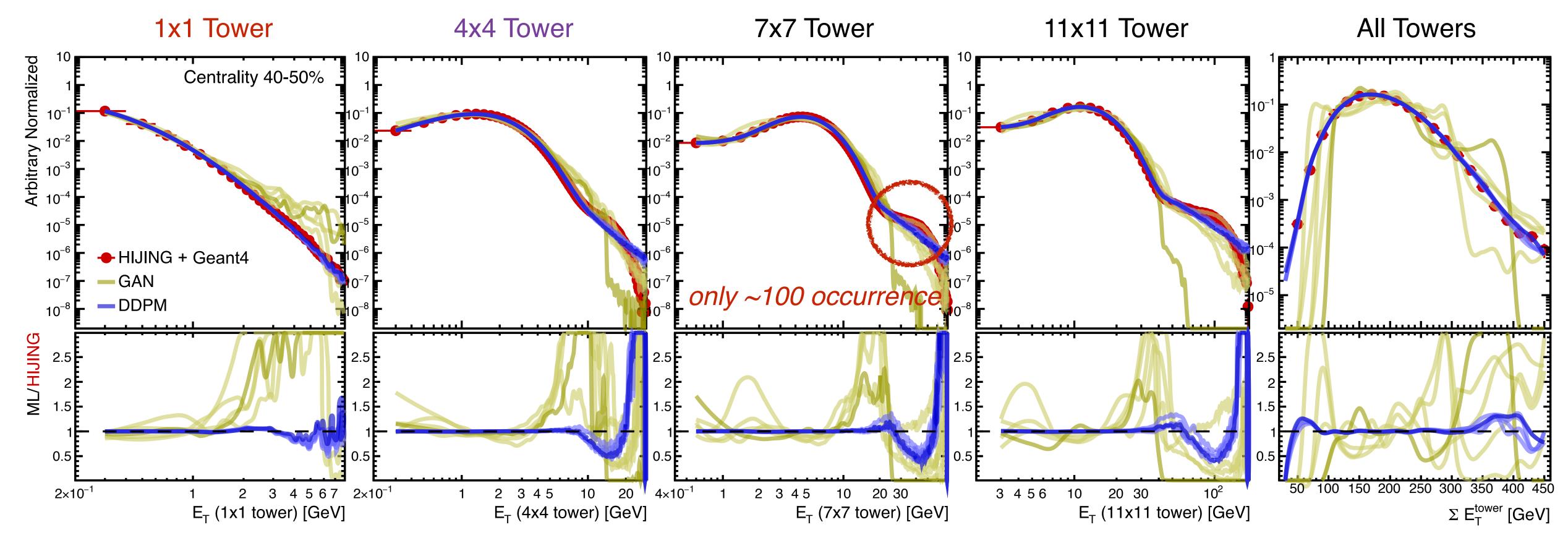
# Performance: Transverse Energy (40-50%)



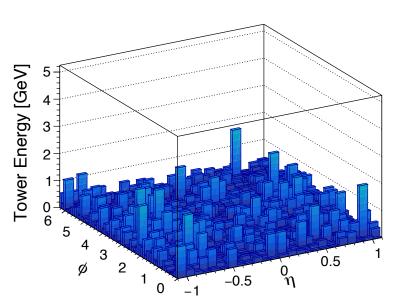
- DDPM outperforms GAN
  - ⇒ great stability, good agreement with HIJING+G4 at high probability region



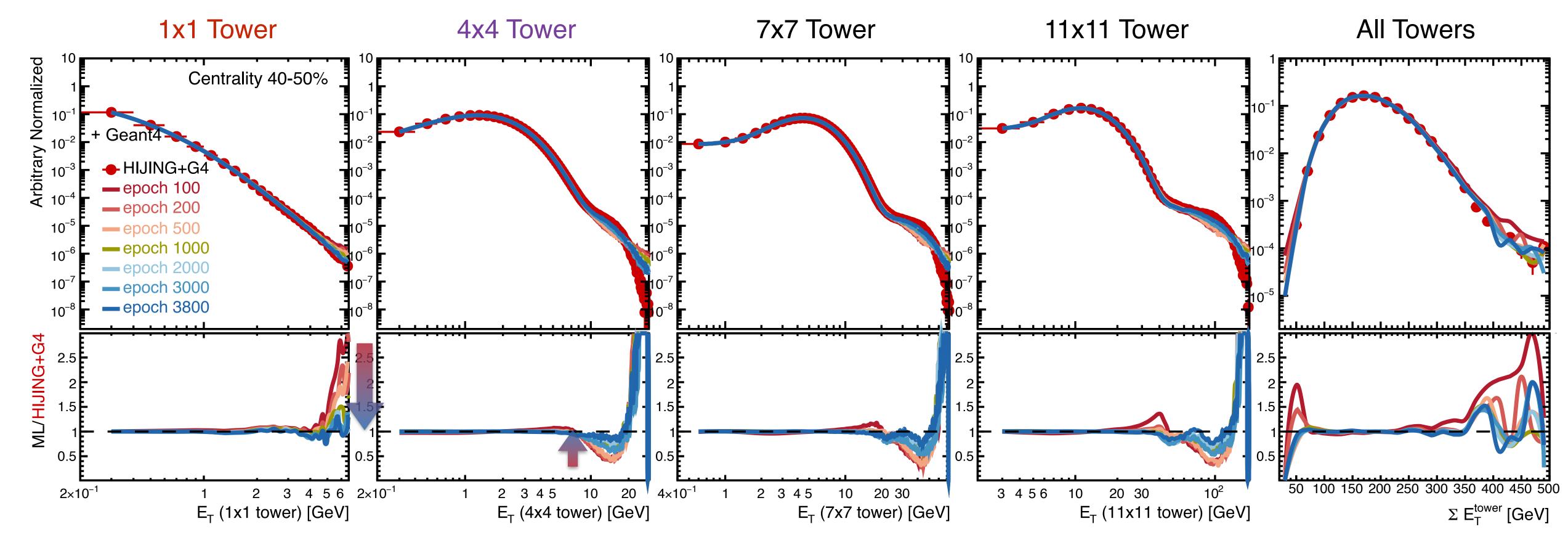
# Performance: Transverse Energy (40-50%)



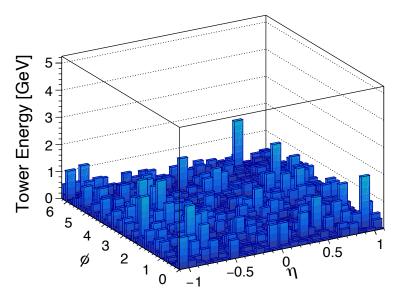
- DDPM outperforms GAN
  - ⇒ great stability, good agreement with HIJING+G4 at high probability region
- Non-gaussian rare tail at the high energy region → challenge to reproduce



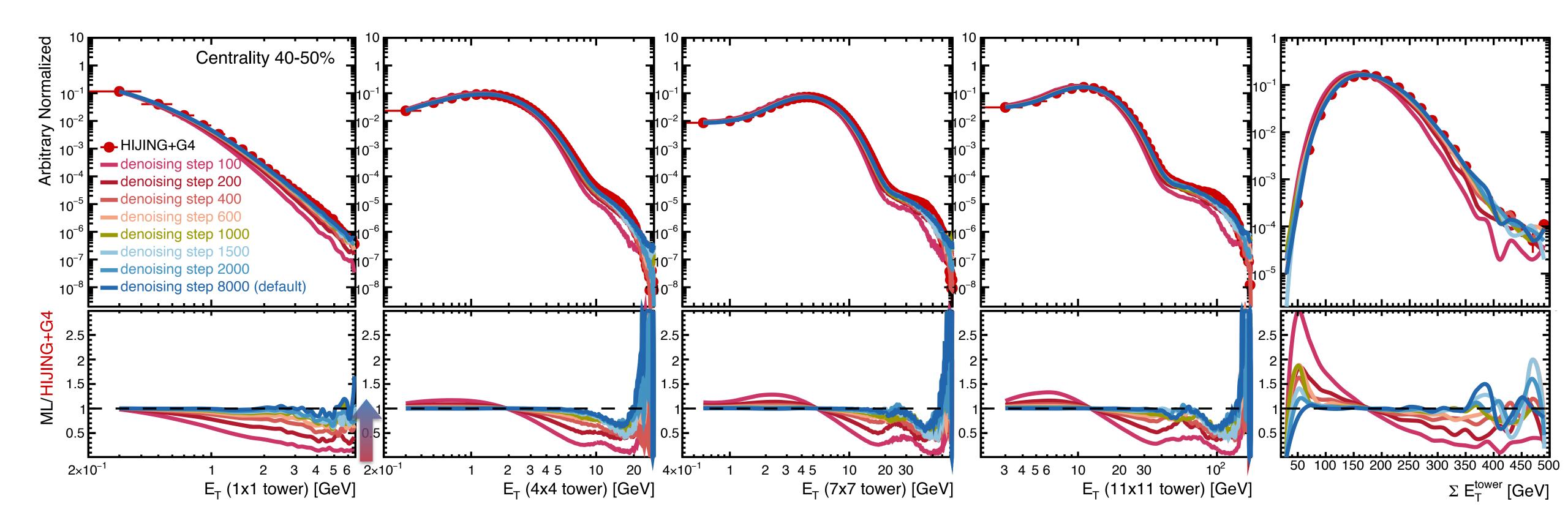
# Trade-off between Training time and Fidelity



- epoch ~ training duration
- DDPM models with the higher epochs give better performance!
  - → but, the higher the epochs, the *longer the training time*



#### Trade-off between Generation time and Fidelity



- DDPM models with the higher de-noising steps give better performance!
  - → but, the higher the de-noising, the *longer the generation time*

## How long does it take to simulate a large sample?

|                                   | Generating time    | Speedup     | CPU/GPU          |
|-----------------------------------|--------------------|-------------|------------------|
| HIJING + GEANT4<br>(Conventional) | 40 minutes / event | 1           | Single CPU       |
| DDPM                              | 1.34 s / event     | ~1,800X     | NVIDIA RTX A6000 |
| GAN                               | 0.42 ms / event    | ~5,700,000X | NVIDIA RTX A6000 |

- GAN is faster, but the DDPM exhibits high fidelity in describing the truth ground (HIJING+GEANT4)
- DDPM provide a speedup of O(100), considering a 32-core CPU equivalent to a GPU

#### Conclusion and Future work

- Simulations of high energy nuclear experiments
  - highly complex and computationally intensive
  - → both fidelity and speed is important

#### Conclusion and Future work

- Simulations of high energy nuclear experiments
  - highly complex and computationally intensive
  - → both fidelity and speed is important
- Diffusion model (DDPM) was used to generate the whole-event full-detector simulated calorimeter data in high fidelity for the first time in heavy ion collisions
  - → GAN used as a reference
  - → DDPM outperforms GAN for scientific fidelity
  - → trade-off found between <u>training</u> / <u>generation</u> duration and <u>the quality of reproducing the rare</u> <u>feature</u>

#### Conclusion and Future work

- Simulations of high energy nuclear experiments
  - highly complex and computationally intensive
  - → both fidelity and speed is important
- Diffusion model (DDPM) was used to generate the whole-event full-detector simulated calorimeter data in high fidelity for the first time in heavy ion collisions
  - → GAN used as a reference
  - → DDPM outperforms GAN for scientific fidelity
  - → trade-off found between <u>training</u> / <u>generation duration</u> and <u>the quality of reproducing the rare feature</u>

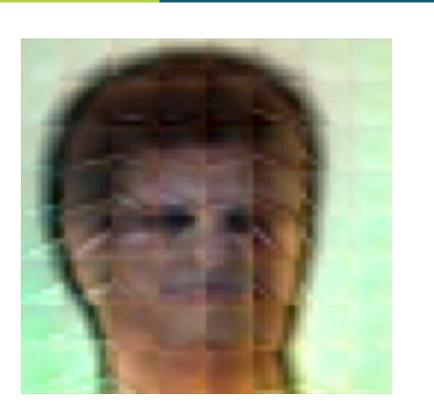
#### Outlook

- → future work includes improvement of performance in the region where data are rare
- ⇒ using diffusion model to study rare probes (e.g. jets) in heavy ion collisions

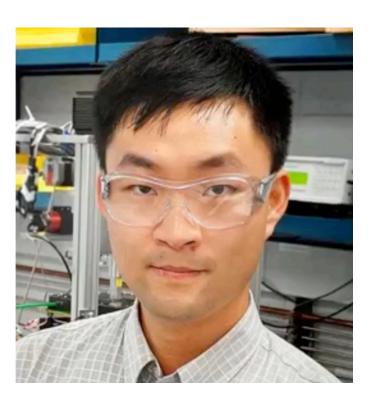
#### Our Team



Yeonju Go



**Dmitrii Torbunov** 



Jin Huang



Yihui Ren

 Contacts: {ygo, dtorbunov, jhuang, yren}@bnl.gov



Tim Rinn



Yi Huang



Haiwang Yu



Shinjae Yoo



Meifeng Lin



**Brett Viren** 

#### Acknowledgement

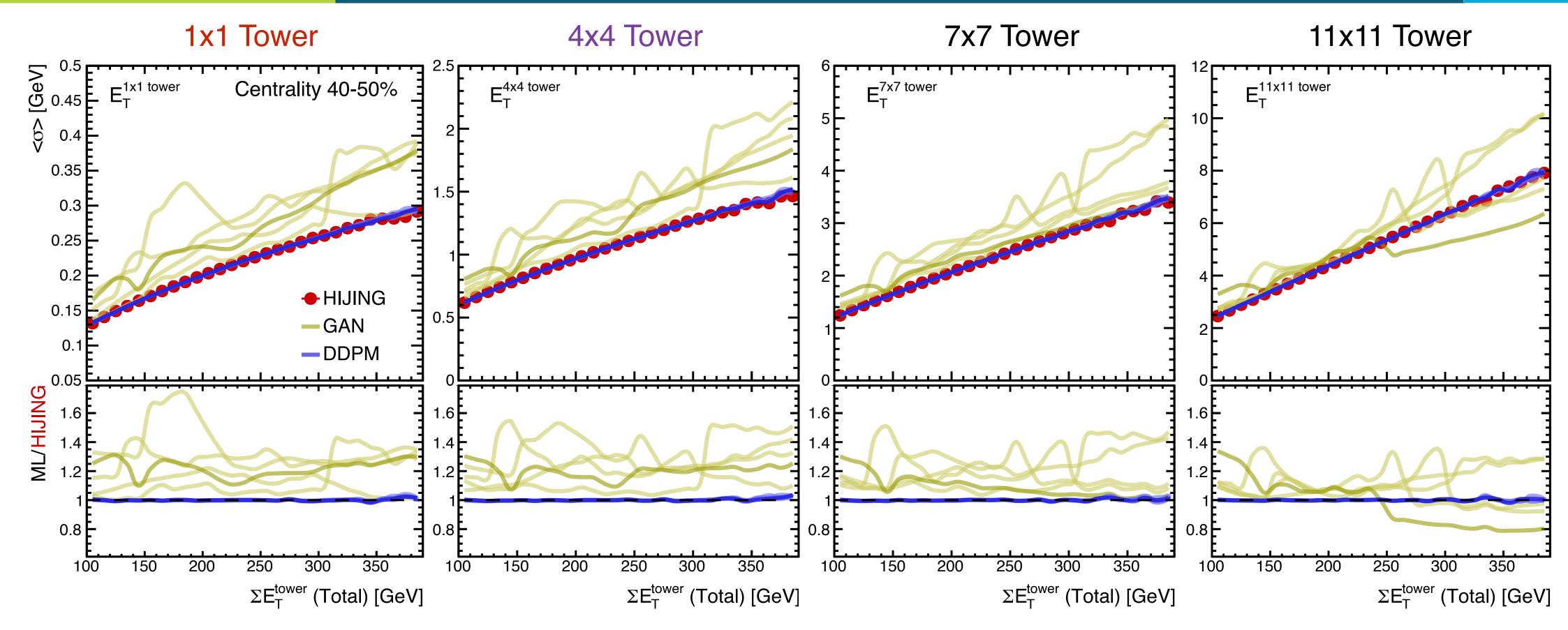
- The LDRD Program at Brookhaven National Laboratory, sponsored by DOE's Office of Science under Contract DE-SC0012704, supported this work.
  - We acknowledge sPHENIX. Its simulation data was used to demonstrate our algorithms.

#### BACKUP

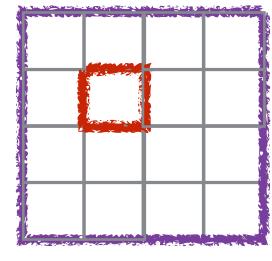
# DDPM Configuration

- number of diffusion steps T: default 8000 / variation [1000, 16000]
- variance schedule  $\beta_t$ : default 0.1 / variation [0.02, 0.2]
- training batch size: default 128 / variation [100, 12500]
- training steps per epoch: default 2000
- epoch: default 4000 / variation [100, 4000]
- training with the Adam optimizer with learning rate 10-4
- trained with 600,000 events per each centrality bin
- tested with 100,000 events per each centrality bin
- neural network architecture (U-ResNet + Attention)
- depth/width of the model
  - → U-Net encoder-decoder stage, channels per stage: 32, 64, 128 each of which comprised of two ResNet blocks

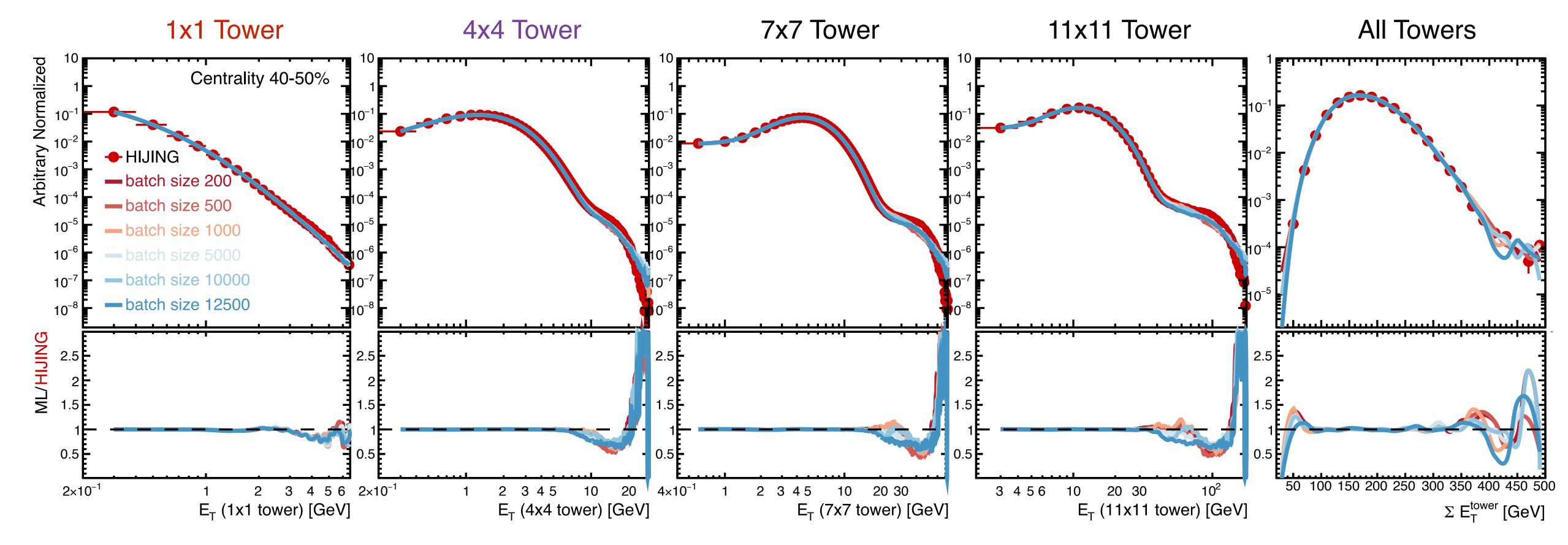
#### Performance: Transverse Energy Fluctuation (40-50%)



- DDPM outperforms GAN
  - great stability, a few percent-level accuracy



#### Batch Size Dependence



• Batch size not only introduces different random seeds and but also changes variance schedule  $(\beta_t)$ 

