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Tracking In a Nutshell
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Combinatorial Problem
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- Typical hundreds of particle come out of the collision

- Combinatorial problem where the computational complexity grows quite quickly



Trigger in a Nutshell
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EF tracking

—F Tracking Review Committee: Recommendation that

“ATLAS commit to a commercial solution for EF
Tracking at HL-LHC,”

Heterogeneo

the C

PU to O

us devices (e.g., GPUs and FPGAs) allow
fload specialized tasks, and may provide

power saving and/or throughput increase

- Within this context, use of Al/ML doesn’t just stop at
pushing performance

+ Computing & throughput requirements are just as
critical and necessary

-+ Use of Al/ML stands within
constraints of the full project

the context of the criteria/
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EF Tracking: Philosophy & Schedule

1st Demonstrator: (Completed) Encouraged “bubbling up” of standalone algorithms
Various ideas (including Al/ML) were tested to understand the efficacy and base performance

Highly synergistic collaboration across various communities within ATLAS
2nd Demonstrator: (Current) Integrate algorithms into tracking pipelines on each technology

Promising ideas have been picked, including Al/ML ones

Al/ML solutions in this presentation are those being integrated for the 2nd demonstrator cycle

1.3.4 EF Tracking

Start up Activities / Requirements Capture
1st Demonstrator Development
Requirements & Tech Choice Criteria Review
2nd Demonstrator Development

E F -|— k S h d | Specifications Review

raC I n g C e u e Preparation for Technology Choice

PDR, incl. SW/FW Review: Choice of Technology

Prototype Development

FDR, incl. SW/FW Review

Final System Preparation

SW/FW Ready for Commissioning

Requirements Ready for EF PRR

SW/FW Needed by ATLAS for Commissioning
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Commissioning
Float: 431 days
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Al/ML |dea: Graph Neural Networks

Tackle tracking in a completely new way

Ongoing studies to update to latest simulated geometry
Comparable performance to offline results
Sparse random data access for messaging passing step is a

challenging on accelerators

Optimization being performed to reduce inference time and

everage GPU technology to increase t

GNN pipeline
] .~ Graph Neural
Metric »
Jsarning '.4\ [‘ Network
AN, Lot o
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Module ¢ .
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Hits Graph
Graph Edge
Construction Labeling

nroughput

Dedicated effort for implementing GNNs on FPGAs

Edge Scores

Connected

Connected
Components
+ Walkthrough
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Standard
ATLAS software
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Track Candidates 7> fit ATLAS track candidates
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https://indico.cern.ch/event/1367088/contributions/5818655/attachments/2807751/4899685/GNN4ITk-status-update-Feb24.pdf

ML Enabling Classical Algorithms on Accelerators

Typical Tracking pipeline

Clustering & Space | Ambiguity

Point Formation ' Seeding . [ACKNRH) Resolution Track Refit
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- Conformal (Hough) transform is a relative simple/cheap pattern recognition algorithm
Fixed data access pattern is significantly more efficient
- Cost: Lot of fake hit combinations & No figure of merit on fit quality
Need to preform a preliminary “Ambiguity resolution” without using the time consuming fit for each track
Leverage the performance of ML to predict this figure of merit”?
- Classify a vector of x/y/z position coordinates as coming from a 'true or fake track’
—stablished during TDR addendum process - Link
Being incorporated into ACTS for seed filtering - Link



https://cds.cern.ch/record/2802799/files/ATLAS-TDR-029-ADD-1.pdf
https://indico.cern.ch/event/1367088/contributions/5818658/attachments/2807673/4899534/ML-ACTS.pdf

Al/ML ldea: Fake Removal

. . Fake rejection algorithm
NN can be used to calculate the figure of merit (FOM)

- Tracks sharing hits are rejected based this on FOM
Large reduction in the fake tracks with relatively high efficiency! pamers e o o

his Al/ML idea allowed track candidates to fit within the data
bandwidth requirements and enable this pipeline for FPGAs

From list of accepted tracks Compare and delete duplicates
Large reduction in duplicate/fake track
for a very small loss of tracking efficiency
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Al/ML Idea: Path Finder

Kalman filter/extrapolation algorithm is the standard for reconstructing/fitting the track
Precision algorithm that requires magnetic field and detector description
Train a NN to encode this information and predict the trajectory

Given a tracklet, can the NN predict the next hit?
Reduce expensive computation to matrix multiplication that can be accelerated on FPGA/GPUs

Assume Seeds of three hits are available
1. Input 3 hits into the NN
2. Predict (extrapolate) the location of the 4th hit
3. Look for hits in the detector nearby the predicted location
4. Append all compatible hits to the track seed
5. Repeat until the edge of the detector is reached or no compatible hits are found
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Full Track Reconstruction

NN is able to learn the trajectory of the particle in our complex detector/magnetic field
mplement the NN in a standalone track finding algorithm

Comparably high reconstruction efficiency
Being iImplemented in Athena with ACTS for large scale testing

Tracking efficiency in mu = 200
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NN learns the detector geometry Tracking efficiency in a HL-LHGC environment
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Al/ML |dea; Coarse Parameter Prediction

All accelerator based algorithms (including GNNS)
envision a CPU based track fit using the ACTS
Kalman Fitter

dentified the need for a simple for a coarse
Darameter estimation

Use a vector of x/y/z position coordinates to
predict pT/eta/phi/d0/z0 as starting guesses for

Kalman Fitter
Being integrated into ACTS/Athena for larger
scale testing

Clustering & Space

Point Formation I

—

—

Seeding Track Finding

Accelerator pipeline
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Resolution
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d0 [mm)] true - pred

fi

Boundary between accelerator and cpu is

something to optimize
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NN performing a
coarse
prediction
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Al/ML Pipelines

Requires conversion of Al/ML (python based) to C++ based algorithms

Significant effort into developing the tools on incorporate Al/ML into pipelines

........ ACTS based

FPGA-BASED

. DATA s|_|C|NG PATTERN ROAD TO > DUPLICATE f KALMAN i -
SCORING 1
. PREPARATION = ENGINE RECOGNITION TRACK —> REMOVAL | FILTER . I I

PIPELINE

ML algorithms for major Pathfinder Overlap Resolution
tracking sub-algorithms GNNs Parameter Prediction

13



ONNX & HLS4ML
ink - Athena interface for GPU NN inference

+ For CPUs/GPUs, ONNX is the goto standard
- Leveraging Core software development "
- Established HLS4ML as goto tool for ATLAS
- Work performed In first cycle lead to a common understanding

- Understanding limitation, creating implementation, validating inference calls  stee:

- Inter-Ops
- Establishing pruning/quantization strategies for efficient implementation stage 3
Stage 4
Time
Impact of pruning for GNNs Tools for customizing quantization
Training performance of pruned models (64 dim) Distribution of (non-zero) weights
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https://indico.cern.ch/event/1373694/contributions/5773798/attachments/2787751/4860805/OnnxRuntime%20in%20Athena.pdf

Al/ML on accelerators

For CPUs/GPUs, single inference calls are very inefficient

Studies ongoing to batch inference calls around NN -
Validation of NN on FPGA

~or FPGAS, the Vitis kernel flow has been established & _
validated for NNs
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Scaling restriction

Reasonably priced accelerator cards tend to have small memory,
with FPGAs having comparatively smaller compared to GPUSs

- Al/ML algorithms are not immune to the combinatorial growth of
tracking

GNN Graph building requires huge memory

Work ongoing to fit this algorithms on FPGA though segmenting
the detector in eta/phi slices

Some degradation in performance, retraining recovers the losses
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GNNs Edge efficiency

GNN Edge -Wise EfflClency (New GNN)
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2x2 w/ 0.1x0.1 | 4x4 w/ 0.1x0.1 | 8x8 w/ 0.1x0.1
Overlap Overlap Overlap

Regions in Phi- 1x1 (Full 1x2w/0.1 0 2x1 w/
Eta Detector) verlap 0.1 Overlap

Impact of detector segmentation Num Graphs 1000 2000 2000
. Avg Nodes ~310k ~156k ~158k
on GNNs memory requirement

Avg Edges ~ ~19m ~929k ~951k
Avg Size (MB) { ! ~54MB ~55 MB

4000 16000 64000
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~28 MB ~8 MB



https://indico.cern.ch/event/1372613/contributions/5770725/attachments/2785310/4856009/GNNEFTracking_23Jan.pdf

Integration in ACTS/Athena

Pipelines are required to start/end in Athena

£

All algorithms (including Al/ML) neec

Accelerators require complex data transfer and EDM management
ated in Athena

GPUs/FPGAs communication have been established and valio

olumbing’ to make this happen

Spacepoint FPGA kernel has successfully been integrated with Athena

Working to establish quantization requirements - required feedback for NN training

- Interface to ACTS based KF fitter has established and merged in

common monitoring tools

ActsTrk{

KF iﬂterface ActsEFProtoTrack

for EF pipelines

std: :vector<ActsTrk: :ATLASUncalibSourcelLink> measurements =

std::unique ptr<Acts::BoundTrackParameters> parameters =

‘0 Athena

Developed this interface in collaboration with Tracking CP/ACTS developers
Provides the conversion to XAOD Track EDM objects for analysis and connection to

Data Transfer pattern and latency
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Conclusions

Al/ML algorithms are integral components of the EF tracking pipelines

Many pioneering efforts, but also collaborating with and adapting other

ongoing efforts

accelerators

S0th novel new solution and enabling of classical algorithms for

First development cycle identified various promising Al/ML algorithms

Focus to integrate these |
chains

Once connections are de

nto the large scale simulation and hardware

NNs are never the full chain and require plumbing

ned, well defined opportunities for newer Al/

ML ideas to be incorpora

ed

Without Machine Learning

/\ *VERY SPECIFIC

INSTRUCTIONS

18



