Bremsstrahlung background in electron polarimeter at ESR

Zhengqiao Zhang Apr 10, 2024

Motivation

- Dave was considering about the technique of performing the energy-weighted integral without a threshold for the photon detector.
- This technique requires a controllable background from synchrotron radiation and Bremsstrahlung.
- The synchrotron radiation study was conducted on the previous lattice and required a 1mm tungsten shield to block all the synchrotron radiation photons. I conducted a similar study for the latest lattice; it seems a 0.2mm shield might be enough, but this may not be correct. I need more time to verify this.
- In this talk, I will present the study on Bremsstrahlung.

Lattice Version 6.2

Latest version

To contrast with the previous version, the bending angles for D5 and D2 have seen an increase of 0.3 mrad and 0.5 mrad, respectively.

BetaX = 28.3 meters BetaY = 28.1 meters

89.0%

45.6%

18GeV

Cross section of Bremsstrahlung on H2 gas

Feynman diagram of Bremsstrahlung

Here, we consider the electron beam colliding with the residual H_2 gas in the beam pipe. In principle, we need to know the gas pressure along the beamline; however, I don't think we have that information yet. Therefore, I assume a uniform distribution of the gas pressure, which is 1.0e-08 mbar, a typical value around IP6.

Follow the Eq. 93.16 in Lifshitz QED textbook (section 93)

$$\frac{d^2\sigma}{d\omega d\delta} = 8Z^2 \alpha r_e^2 \frac{1}{\omega} \frac{\varepsilon'}{\varepsilon} \frac{\delta}{(1+\delta^2)^2} \left(\left[\frac{\varepsilon}{\varepsilon'} + \frac{\varepsilon'}{\varepsilon} - \frac{4\delta^2}{(1+\delta^2)^2} \right] \ln \frac{2\varepsilon\varepsilon'}{m_e\omega} - \frac{1}{2} \left[\frac{\varepsilon}{\varepsilon'} + \frac{\varepsilon'}{\varepsilon} + 2 - \frac{16\delta^2}{(1+\delta^2)^2} \right] \right)$$

Here $\boldsymbol{\omega}$ is the photon energy, $\boldsymbol{\varepsilon}$ is the electron beam energy, $\boldsymbol{\varepsilon}'$ is the energy of scattered electron, $\boldsymbol{\delta} = \boldsymbol{\theta}^* \boldsymbol{\varepsilon} / m_e$

Total cross section for $E_{\gamma} > 0.1$ GeV is 185.723 mb;

Beam parameters and beam gas rate

				_
	Species	proton	electron	ĺ
	Energy [GeV]	275	18	
	CM energy [GeV]	140.7		
	Bunch intensity [10 ¹⁰]	18.9	6.2	
	No. of bunches	290		
	Beam current [A]	0.69	0.227	
	RMS norm. emit., h/v [μm]	5.2/0.46	845/70	
	RMS emittance, h/v [nm]	17.6/1.6	24.0/2.0	
	β*, h/v [cm]]	417/38	306/30	
Electron beam gas collision rate = $L_{bg}^* \sigma_{eH^2}$;	IP RMS beam size, h/v [µm]	271/24		
Luminosity of background = (beam current) * (average gas d	lensity) * (length);			
$Current = (0.227 C/s)^* (electrons/1.6e-19C) = 1.4187500e+18$	electrons/s;			

Length = 40.0m; $\sigma_{eH2} = 185.723 \text{mb} *2;$

PM = dRT; R =0.0821 atm/mol; P =1.0e-08 mbar = 1.0e-08*0.000986923 atm = 9.8692300e-12 atm T = 293k; M = 1.00794g/mol (molar mass) Density = 1.0587422e-13g/L = 2.47072e+08 H2/cm3

Electron beam gas collision rate =

1.4187500e+18(s-1)*2.47072e+08(cm-3)*4000(cm)*185.723*(1.0e-27cm2)*2 = 521<u>kHz;</u> //18GeV

Transverse beam size

The emittance between two points is conserved, regardless of the change in beam shape and orientation, so the twins parameters transform as:

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix} = \begin{pmatrix} C^2 & -2SC & S^2 \\ -CC' & (S'C+SC') & -SS' \\ C'^2 & -2S'C' & S'^2 \end{pmatrix} \begin{pmatrix} \beta_o \\ \alpha_o \\ \gamma_o \end{pmatrix}$$

- The collision vertex depends on the beam size;
- Beam size can be given by the emittance and beta function as

$$\sigma_{x,y} = \sqrt{\epsilon_{x,y}\beta_{x,y}}$$

• The beta functions can be calculated using the transform matrix along the beamline;

Beam angular divergence

- Angular divergence gives spread in the angles of beam particles;
- With α and β from the beam lattice, the divergence can be given by

$$\sigma_{\theta} = \sqrt{\epsilon \frac{1 + \alpha^2}{\beta}}$$

• The divergence is applied to generated photon and electron as random Gaussian rotations imposed on particles 3-momenta with the width of $\sigma_{0;}$

Photon energy and polar angle

- By integrating the double differential cross section of the Bremsstrahlung process with the beam effect, I generated 5 M events distributed along the 40-meter length of the beamline, particularly focused around the exit window.
- The energy of the photons ranges from a minimum threshold of 0.1 GeV up to the energy level of the beam.
- The Bremsstrahlung photons are in the quite forward direction;
- These events were then put into the simulation framework of the electron polarimeter.

Scattered electron energy and polar angle

Detection of Bremsstrahlung Photons in the Photon Detector

- Electrons scattered from Bremsstrahlung are deflected in the opposite direction by the magnet, resulting in the detection of only Bremsstrahlung photons in the photon detector.
- The primary source of photons is the beamline spanning approximately 3752 to 3764 meters, concentrated around the laser IP.
- The photon detector registers a total deposited energy of about 1.76e5 GeV per second.
- As we have 2.29e7 bunches per second, the energy deposited from Bremsstrahlung per individual bunch time amounts to around 0.0077 GeV.
- Assuming roughly one Compton event per bunch, the energy deposition is estimated at 3.4 GeV per bunch, making the 0.0077 GeV seemingly negligible in comparison.

Summary

- The amount of background radiation from Bremsstrahlung affecting the photon detector is very low, just 0.0077GeV per bunch.
- The residual gas pressure around the laser Interaction Point (IP) is crucial.
- Need to double-check the background from synchrotron radiation.
- Next, study the background for the electron detectors.