Nobel Prize in Physics for Attosecond Physics

Stockholm U, Dec 8, 2023

Ferenc Krausz (MPQ) Anne L'Huillier (Lund) Pierre Agostini (OSU) OSU red carpet, March 20, 2024

Pierre Agostini Brutus

Feynman's lesson on Nature

the outcome of a quantum process is dictated by the sum over all the quantum trajectories that contribute to it.

 we analyze based on these trajectories, but we don't necessarily measure them

attosecond clocking of strong field quantum trajectories

menu:

- synopsis of strong field atomic physics
- semi-classical unified view
- quantum trajectory selector (QTS) concept
- building the QTS
- clocking rescattering

building a quantum trajectory selector for strong field physics

can attstseconfidellighthysicsheursaltoleceatboutcstndnsgifeelcephysics?

BNL 2024 April 23

2001: Vienna & Paris attosecond era

DEPARTMENT OF

STATE PHYSICS

- recollision provides a simple, intuitive view of strong field interactions in the tunneling regime
- ✓ tunneled electron wave packet dynamics dominated by the field thus U_p (quiver energy) becomes a good ruler
- ✓ initial conditions defined by tunnel ionization

rescattering or 3-step model: the cartoon

Schafer, Yang, DiMauro & Kulander, *PRL*, **70**, 1599 (1993) Corkum, *PRL*, **71**, 1994 (1993)

tunneling + propagation + interaction

- ✓ classical trajectories have different release time (phase), propagation time and harmonic emission times & energy
- ✓ maximum *return energy* is 3.17U_p
- ✓ maximum *electron energy* 10U_p
- ✓ physics is inherently sub-cycle

recollision heralds the attosecond science era

tunnel ionization in the optical regime

Keldysh picture of strong field tunnel ionization a sub-cycle view of ionization

DEPARTMENT OF PHYSICS

tunnel ionization: initial conditions

tunneling wave packet characteristics

- ✓ all tunneling WP look the same
- ✓ born outside the potential well with near zero velocity
- ✓ ionization is highly nonlinear (exponential) ⇒ limits the intensity range for measurements
- ✓ wave packet (WP) born at peak of ac-field \Rightarrow initial phase fixed

the experimentalist has limited control of the initial condition

goal: use XUV to control the ionization time with attosecond precision and observe recollision

past efforts: control of HHG by APT seeding

PHYSICAL REVIEW A 72, 013411 (2005)

Large enhancement of macroscopic yield in attosecond pulse train-assisted harmonic generation

Mette B. Gaarde and Kenneth J. Schafer Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001, USA

Arne Heinrich, Jens Biegert, and Ursula Keller ETH Zurich, Physics Department, Inst. of Quantum Electronics, CH-8093 Zürich, Switzerland (Received 17 December 2004; published 28 July 2005)

"Control of high-order harmonic emission using attosecond pulse trains" JMO 53, 87 (2006)

Attosecond control of electron-ion recollision in

high harmonic generation

G Gademann^{1,6}, F Kelkensberg¹, W K Siu¹, P Johnsson², M B Gaarde^{3,4}, K J Schafer^{3,4} and M J J Vrakking^{1,5}

New J. Phys. 13, 033002 (2011)

Self-probing spectroscopy of XUV photo-ionization dynamics in atoms subjected to a strong-field environment Nat. Comm. 8 (2017)

Doron Azoury¹, Michael Krüger ¹, Gal Orenstein¹, Henrik R. Larsson ², Sebastian Bauch³, Barry D. Bruner¹ & Nirit Dudovich¹

deconstructing the strong field processes

quantum trajectory selector (QTS) method

objective: study XUV recollision-induced strong field processes

- ✓ replace the strong field tunnel step with atto XUV ionization (step 1)
- ✓ use intense phase-locked MIR to drive propagation (steps 2 & 3)

prerequisite: $(q\omega - I_p) \sim 0$, $U_p \rightarrow large$, $R_{q\omega} \gg R_{\omega} \sim 0$ solution: use the λ^2 scaling at longer wavelength

quantum trajectory selector apparatus

QTS: recollision (e,2e) double ionization of argon

observations

- Ar^{2+} oscillate at $2\omega = recollision$
- MIR (1.7 μm) alone is < 5% dc
- $3U_p = 25 \text{ eV} < I_p(\text{Ar}^+) = 27.6 \text{ eV}$
- model based on recollision impact excitation/direct ionization crosssections convoluted with RABBITT measurement yields good agreement

QTS: double ionization for LP & CP fundamental field

DEPARTMENT OF PHYSICS

observations

- 2ω modulation of the Ar²⁺ yield decreases by factor of 8 for CP
- MIR alone: goes to zero for CP
- the residual 2-color background is independent of polarization

QTS: streak clocking the double ions

vector potential

300

200

100

- 1.0

0.8

0.6 0.4 0.2

Mode

20

argon double ion delay spectrogram

argon electron delay spectrogram

Electron energy (eV) 0 00 -0.5 0.0 0.5 1.0 $t_{XUV} - t_{NIR}$ (NIR cycle)

electron & double ion delay scans are recorded in parallel

calibration: maximum streaked energy (2Up) occurs at E-field node

(arb

A (amu)

Ion mass/charge

30

С

Ar²⁺ max occurs ~ 0.30 (0.02 [118 as]) MIR cycles after E-field node

3.17U_p classical phase is 0.297 MIR cycle!

QTS: streak clocking the Ar²⁺ & rescattered electrons

DEPARTMENT OF

PHYSIC

STATE

clock the rescattered plateau electrons at 0.27 ± 0.02 NIR cycle

classical phase for 10Up electrons & 3.17Up: ~0.28 & 0.30 cycles!

QTS: intensity dependence of rescattering process

DEPARTMENT OF PHYSICS

STATE

- (e,2e) & elastic scattering persist above- & below-threshold
- (e,2e) & elastic scattering show different intensity dependence (50-200 as)
- modeling predicts an intensity dependent delay
- model shows that collisional impact excitation & direct (e,2e) ionization important

QTS: a future paradigm for strong field physics

- robust & generalized control of initial & propagation conditions
- ✓ focus on non-classical behavior
- ✓ SF physics via excitation from core states
- ✓ wave packet holography
- clocking dynamics and structure in the molecular frame

Agostini/DiMauro group

CHIC DEPARTMENT OF STATE UNIVERSITY PHYSICS

OSU:

- Pierre Agostini
- Andrew Piper
- Joey Liu
- Yaguo Tang
- Dietrich Kiesewetter
- Abraham Camacho-Garibay

LSU:

- Kenneth Schafer
- Jens Bakhoj

theory

NSF Mid-Scale Research Infrastructure (RI-1 & 2)

NSF RI program addressed the NAS Recommendations for US Laser Infrastructure

"The United States was the leading innovator and dominant user of high-intensity laser technology when it was developed in the 1990s, but Europe and Asia have now grown to dominate this sector through coordinated national and regional research and infrastructure programs. In Europe, this has stimulated the emergence of the Extreme Light Infrastructure (ELI) program." Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light, NAS, 2018

The NeXUS Facility at Ohio State University

NeXUS Overview

- kW-class Ultrafast Laser:
 8 mJ at 100 kHz or 0.8 mJ at 1 MHz, pulse duration down to 8 fs
- drive attosecond and femtosecond XUV and soft X-ray generation
- supply XUV light to the following experimental end stations
 - ✓ X-ray absorption / X-ray reflection spectroscopy (TR-XAS/XRS)
 - ✓ Angle-resolved photoelectron spectroscopy (TR-ARPES)
 - Element-specific scanning tunneling microscopy (TR-STM)
 - ✓ Attosecond science / Laser induced electron diffraction (ATTO / LIED)

The NeXUS Facility at Ohio State University

NeXUS project timeline and progress

DEPARTMENT OF PHYSICS

Questions?