TDR Studies

- ☐ Determine the MPGD spatial resolution required to meet tracking performance
 - Vary spatial resolution in background embedded environment and assess track reconstruction efficiency
 - Vary spatial resolution and assess impact on angular resolution entering PID detectors
- Assess impact of fast timing information
 - Check fast timing layers have hits in the fast-timing layers
 - Are fast timing hits in different layers consistent
 - Match seeded tracks to fast timing layer hits
- ☐ Assess BIC impact on tracking, in particular angular resolutions going into PID detector
 - Compare angular resolutions determined with and without BIC in track reconstruction
- ☐ Redundancy study for when different tracking layers or regions fail
 - Disable different regions and assess tracking performance
- Study misalignment impact on tracking performance
- ☐ Track Reconstruction performance, e.g. Reconstruction efficiency, number of fake and duplicate tracks

Τ

Framework/Software Needs

□ Implementations

- BIC detector into ACTS
- Accommodate disks with off-center holes into ACTS

☐ Algorithm/Code Development

- Ambiguity Solver for multi track reconstruction
- Validation of track covariance matrix (Recent update: Jeetendra, Beatrice)
- Track finding in backgrounds (Recent update: <u>Benjamen</u>)
- Vertex reconstruction (Recent update: Sooraj)
- Track-to-calorimeter matching
 - > For example, backward EM calorimeter could help with performance