Cherenkov angle reconstruction performance study with the standalone pfRICH simulation

> pfRICH General Meeting Youqi Song (Yale) 4/4/24

Simulation workflow

- Generate events with epic.default.h
 - Particle type: π^+
 - p = 1, 4, 10 GeV
 - $\eta = -1.5, -1.8, -2.5, -3.2$
 - $\phi = 0, 5, 10, ..., 355$ degrees
- Check the photon hits on the sensor plane with hit-map-epic.C

• E.g,
$$p = 10$$
 GeV, $\eta = -2.5$

For each set of (p, η, ϕ) , 1000

single-particle events are generated

Youqi Song (Yale)

Simulation workflow

• Plot the number of photons and track level Cherenkov angle and with reco-epic.C

At $\phi = 180$, number of photons is shifted to the left and has a peak at 0, which worsens the angle resolution

 Why is it sometimes 6 photons and many times no photon at all?

Efficiency vs (p, η, ϕ)

 Periodic dips in efficiency could be from the same effect as Fig 4.13 in CDR

Figure 4.13: Efficiency to receive > 6 hits as a function of primary charged particle azimuthal 4 angle ϕ for only Cherenkov photons originating in the HRPPD window (black) and only photons originating in the aerogel (red).

Cherenkov angle vs (p, η, ϕ)

- Resolution is worsened where we have lower number of photons at the ϕ dips
- Errorbars indicate standard deviation of the distributions
- Mean and errors from histograms, not from fit

Backup

