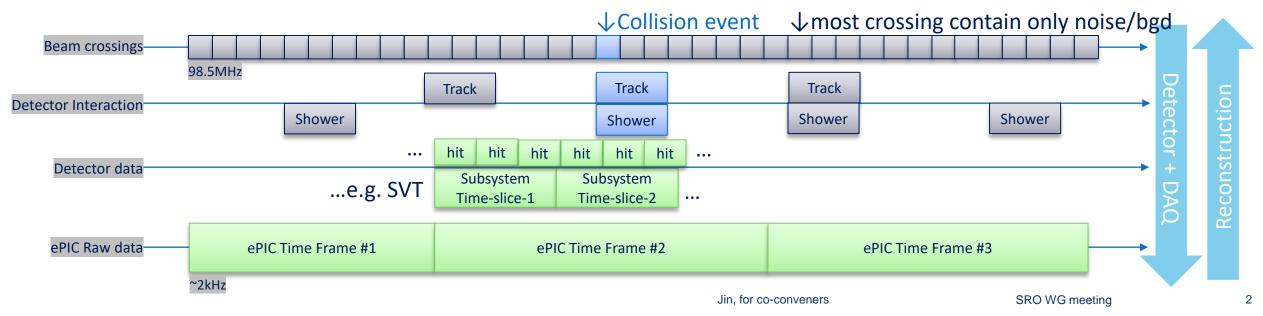
Summary on discussion of offline processing time-frame data

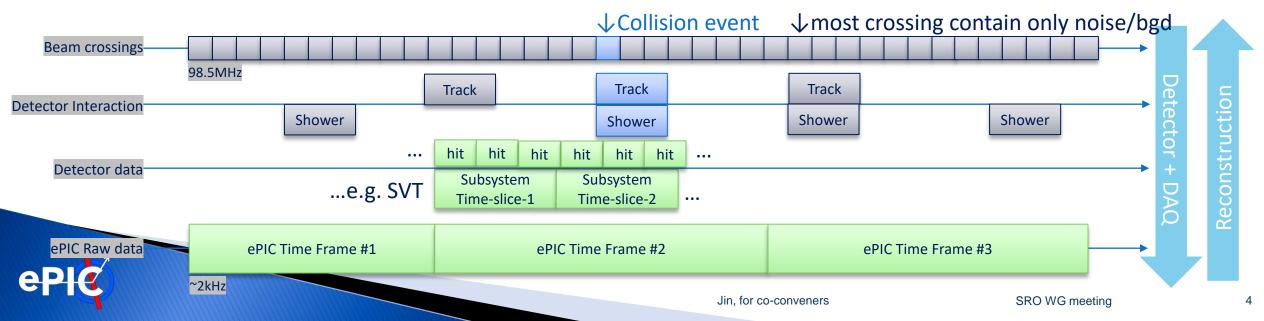

SRO WG meeting Apr 9: https://indico.bnl.gov/event/22949/ including meeting minutes on indico

Marco Battaglieri (JLab), Markus Diefenthaler (JLab), <u>Jin Huang (BNL)</u>, Jeff Landgraf (BNL), Torre Wenaus (BNL)

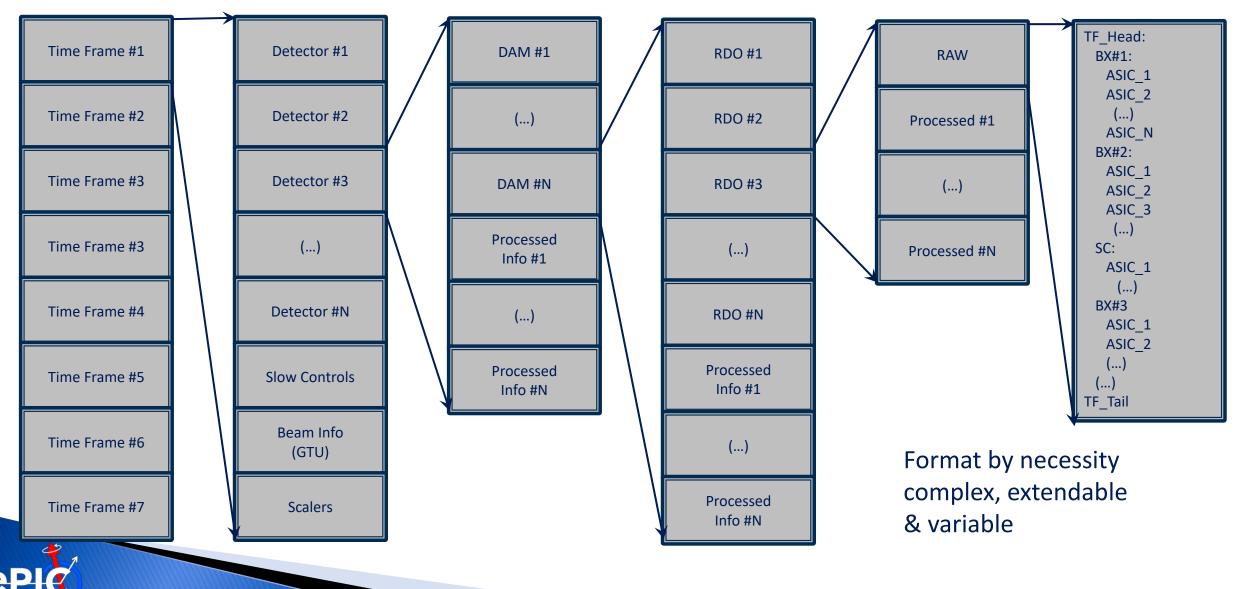
Summary of consensus in SRO WG Apr-9 meeting

- Preference not to align time frame length with respect to the EIC beam rotation.
- Event keying: primary key is 64-bit beam clock (BCO) counter; secondary convenient key is tuple run-timeframe-BCOInTimeFrame; reconstruction will generate event counter tagging
- Run structure will be used, driven by configuration changes; plus continuous readout information on beam/detector monitoring
- Redundant information in storing slow control data: database and raw data file embedding.
 Need to follow up on the implementation of SC data flow from online to offline.

Extra Information


Feel free to share your views Live note on indico [link]

Jin, for co-conveners


Time-Frames Introduction

- We plan to use this meeting to follow up on Nathan's talk on time-frame-based reconstruction, solidify a few open concept in our WG and make progress on their implementation in EICRecon
- ePIC Time Frame concept is developing towards a spec doc in DAQ and SAR WGs;
 - Update discussion on Apr 11 DAQ meeting , please join: <u>https://indico.bnl.gov/event/22945/</u>
 - <=2^16 crossing: 16-bit integer sufficient to locate hit's BX in Time Frame; <=665us/300 events/10MB
 - Exact length defined by GTU sync signal: most flexible
 - We could choose to align with EIC beam evolution (1260BX,): simpler to locate abort gap and spin states
- Time Frames will be order in data files, internally carry header-payload (a.k.a data bank/packets) data chunks from each detector component.

DAQ File Organization (Example...)

From Mar-21 meeting, Jeff's talk on Time Frame Organization and Data Volumes [link]

Readers From Mar-21 meeting, <u>Jeff's talk on Time Frame Organization and Data Volumes [link]</u>

Two distinct sets of readers needed

• Data Bank Navigation

```
rdr = getBank("NameOfBank") or
rdr = getBank(TimeFrame, "Ifhcal/dam_3/rdo_6/raw")
```

• Detector Bank specific readers (presumably implemented as plugins)

```
hit = rdr->nextHit()
hit.bx
hit.highResTOA
hit.channel
hit.adc
```

- Could, of course have multiple readers instantiated at a time for simultaneous decoding
- One likely needs to fill intermediate data structure for processing, so time frame for DAQ and time frame for tracking need not be tied together!

Discussion 1: event keying

- One way to view information provided by streaming DAQ is clock triggered events at *each* beam bunch crossing; offline reconstruction/analysis apply event selections to select the interesting set of events for physics measurements
- Option 1 for event key is the beam crossing counter
 - GTU counting 98.5MHz beam crossing clock with a 64bit counter
 - DAQ/electronics will broadcast EIC beam crossing counter to indexing all detector hits
- Option 2 for event key could be a tuple (run, time-frame, crossing counter in time-frame)
- Either is sufficient. Could use both too

<u>Reference to last meeting</u>,

ePIC

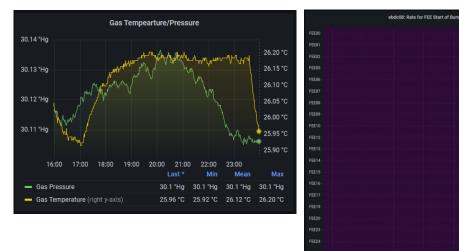
Nathan's talk [link]

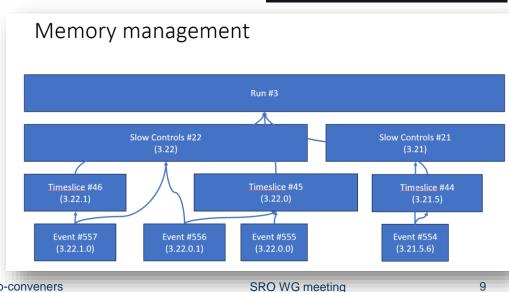
Jin, for co-conveners

Event key

- Generalizes the concept of event number and possibly run number to streaming scenarios
- Event number: For each level in the event hierarchy, have:
 - Absolute number: Starts at 0, increments by 1 monotonically
 - Relative number: Starts at 0 for each parent, increments by 1 monotonically
 - User key: Could be anything
- Run number:
 - Key for reloading resources such as calibrations
 - Helps to be a number, not an interval

Discussion 2: what is an (DAQ) run for ePIC?


This is a discussion. Scenarios for a "DAQ run" could be:


- Electron bunch replacement at O(1)Hz
 - Restarted automatically driven by accelerator bunch replacement control
 - Effectively a *luminosity block*, O(1000) ePIC time frames, require lumi/polarization measurement, scalar reading synchronized to the edge of the lumi window
- Data taking period between human-driven configuration changes (~1hr)
 - Commonly used by many experiment, neatly mapped in configuration DB storage
- Entire hadron ring fill (few hours)
- Not using a DAQ run concept, just luminosity blocks/time frames
 In any case, run start/end will be marked with beam crossing counter at GTU

Discussion 3: slow control (SC) data

- It is good practice to embed slow control data in raw data, but embedded data are hard to use
 - Some periodic reading require interpolation between readings (e.g. temperature); some requires future slow control reading (masking unstable FEEs in deadmap)
- Slow control data will be recorded to online DBs
 - Slow control recording persists regardless data taking 0
 - A mirror of online DB will be available for offline use
- Suggest detach slow control data access from reconstruction pass
 - Instead, use online database sources to produce calibration files (gain map, deadmap, etc.) as input to reconstruction, with validity marked with beam counter ranges
 - Use (automated) calibration job to process slow control data to form calibration input to reconstruction jobs, fits well in the multi-pass calibration computing plan
- Calibration access require scalable calibration database in offline world

Reference to last meeting, Nathan's talk [link]

Discussion 4: Calibration workflow

Calibration workflow seems fits into the prompt reconstruction computing model. Inputs welcomed.

May 1

High level summary plot:

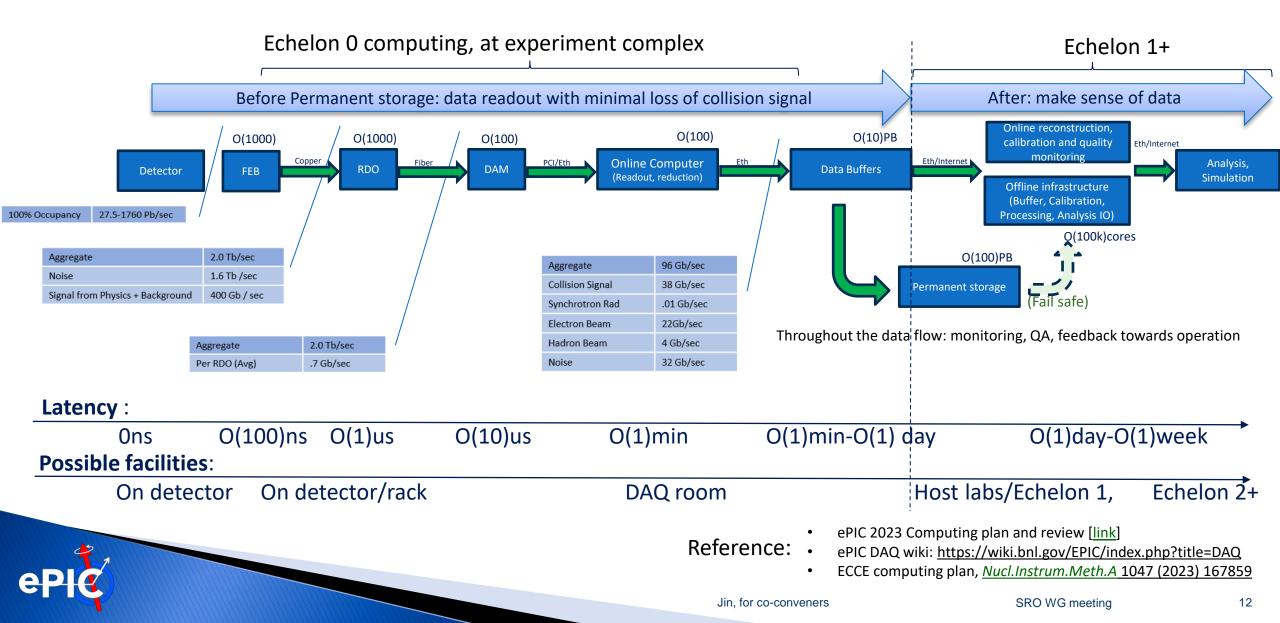
May 1

Tracker Calib/Alignment

12	•																	
	A	В	C	D	E	F	G	н	1	L	к	L	м	N	0	P	٥	R
1			Pre-physics-operation	Steady State calibrations: aim to pro	duce final re	construction-ready calibr	ation within few	days of ph	ysics data	a taking in	a continou	is process	l.	_				Post-reconstruc
2	Subsystem	Region	calibrations (Cosmic, no-beam calibration, commissioning)	Task	Human intervention ?	Data Needed	Dependecy	T0 + 12hr	T0 + 24hr	T0 + 36hr	T0 + 48hr	T0 + 60hr	T0 + 72hr	T0 + 84hr	T0 + 96hr	Monitoring	Computing resource	calibrations (applied at anal stages)
3	MAPS	Barrel+Disk	Threshold Scan Fake rate scan/noisy pixel masking	(See Alignment)														
4	MPGD	Barrel+Disk	?	7														
5	bTOF, eTOF (ac-lgad)	Barrel/Forward	Blas voltage determination ASIC baseline, noise, threshold Clock sync	Gain calibration TDC bin width determination Clock offset calibration Hit position dependency (intrinsic and c-by-c)	QA	High p tracks.	Tracking, pfRICH	Data Acc. Dependen	Depender	Processin	Processin							
5	Central Detector Track	ker Alignment	Initial alignment	Alignment Check/Update (if needed)	QA	Prodcution data		Processing	1									
,	pfRICH	Backward	synchronization	Alignment Check/Update (if needed) Time dependencies (Aerogel transparency, mirror reflectivity, Gas pressure)	2	Prodcution data		Data Acc.	Processin	9								
3	DIRC	Barrel	Laser data?	?	?													
	dRICH	Forward	Bunch timing offset scan Threshold scan Noise masking	Track based alignment	2	High p tracks ~1hr of of production data?	Tracking	Data Acc. Dependen	Processin	Processin	9							
0	ЬЕМС	Backward	Cosmic and LED for the initial gain balancing	DIS Electron Pi0->gg events energy scale	QA	DIS electron Pi0 di-photon resonance ~1 day of production data	Tracking	Data Acc. Dependen	Data Acc.	Processin	Processin	,				LED		
1	AstroPix	Barrel																
2	ScifiPb	Barrel		SIPM gain		?												
3	fEMC	Forward		Pi0, eta->gg events energy scale Second iteration pi0 (if needed)	QA	Pi0 di-photon resonance ~1 day of production data		Data Acc.	Data Acc.	Processin	Processin	Processin	-			LED		High energy clus
	bHCAL	Backward	LED	o	COA .	- i day of production data						Flocessel	9			LLD		non-unearity
			MIP calibration	1														
6		Barrel	Gain calibration	(See hadronic e-scale calib)														
		Forward																
8	fHCAL insert	Forward																
9	Hadronic energy scale	25524282655556	?	Set full calo stack energy scale for hadroinc shower and jets	?	High energy hadronic showers and jets	Tracking h-PID	Data Acc. Dependen				?	?	?	?			Final energy sca calibration (if ner
			Alignment?															
1	low Q2 Tagger (CAL)																	
		Far Backward																
		Far Backward																
4		Far Backward									-							
5		Far Forward		Alignment check		MIP		Processing										
6	B0 PbWO4	Far Forward	Survey alignment/Cosmic	SIPM gain		MIP/Gamma/Electrons		Processing								LED		
7	Roman (Pots)	Far Forward					Acc. BPM Potential use of	Data Acc Dependen	Processin	9								
8	Off Momentum	Far Forward		beam position monitors/fill by fill correction		MIP rate distribution in RP	vertex of central detector	Data Acc. Dependen	Processin	9								
9	ZDC PbWO4	Far Forward	Survey alignment, timing delay	SiPM/APD gain, timing	QA	Photon		Processing								LED		
0	ZDC Sampling	Far Forward	Survey alignment, timing delay	SIPM gain	QA	Single neutron		Processing								LED		

Working document for calibration workflow

Experiment Clock


- Clock will be distributed from GTU to FEB to synchronize digitizers and tag time of the hits
- For collider experiment, it is common to synchronize FEB clock to a harmonics of the beam collision clock
 - Absolute time of hit is not useful
 - But relative time to bunch crossing is critical for TO, spin, and luminosity tagging 0
 - EIC Clock frequency: 98.5MHz (no ramp variation), 1260 RF bunches, 12.8us/revolution
- SVT is a special case: fixed to LHC clock by lpGBT [40.078 MHz], slow [few -10us integrated], and synced to fast detectors offline [sPHENIX implementation]
- ePIC design specification discussion
 - We have multiple ASICs of various digitization frequency
 - E.g. ~40MHz (EICROC), ~50MHz (SALSA), ~200MHz (AstroPix)
 - Shall we distribute clock at 9.85MHz (1/10 harmonic of EIC crossing clock, 126*revolution frequency)?
 - Then FEB/DAM of each subsystem can generate their own synchronized clock at multiples of 9.85MHz
 - Existing example is sPHENIX 9.4MHz clock x 6*16bit per clock @ 1.1Gbps; W Gu tested to 7.9Gbps
 - Beam clock counter and sync signal broadcasted from GTU->DAM->FEE, and embedded in data stream 0

Example: sPHENIX clock data embedding	clock count		0	1	2	3	4	5
at 6x 9.4MHz beam clock,	bits 0-7	mode bits/BCO	mode bits	BCO bits 0-7	BCO bits 8-15	BCO bits 16-23	BCO bits 24-31	BCO bits 32-39
	bit 8	beam clock	1	0	0	0	0	0
12Byte/beam clock [sPHENIX TDR]	bit 9	LVL1 accept	Х	0	0	0	0	0
	bit 10	endat0	Х	Х	Х	Х	Х	Х
	bit 11	endat1	Х	Х	Х	Х	Х	Х
	bit 12	modebit en.	1	0	0	0	0	0
	bits 13-15		3 user bits	0	1	2	3	4
			lin fo	r co-conveners			SRO WG meet	ing

JIN. for co-conveners

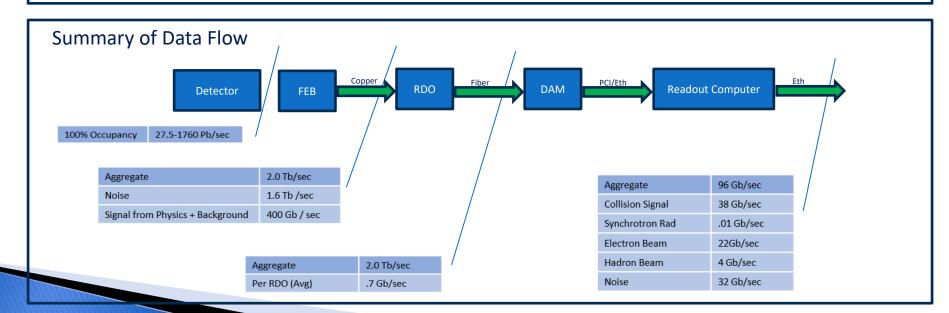
SRO WG meeting

ePIC streaming computing: online to offline

Echelon 0 computing at streaming readout DAQ

- Readout routing, time frame building [see Discussion 1]
- Primary function: data reduction
 - Traditional DAQ: triggering was the main method of data reduction, assisted by high level triggering/reconstruction, compression
 - Streaming DAQ need to reduce data computationally: zero-suppression, feature building, lossless/lossy compression
- Challenge: any information loss is permanent; observe full DAQ rate with less than O(1min) of latency
 - Reliable data reduction methods; Sized to peak data rate + contingency; More expensive (than offline) to develop and maintain
 - $\circ \rightarrow$ Application, only if needed; three subsystem need identified below
- Other critical roles:
 - Slow control; Monitoring (in coordination with monitoring via prompt reconstruction); Meta data collection, database service

Detector	Channels						Fiber	DAM	Data	Data	3 subsystem data reduction need		
Group	MAPS	AC-LGAD	SiPM/PMT	MPGD	HRPPD				Volume (RDO) (Gb/s)	Volume (To Tape) (Gb/s)	beyond FEB/RDO zero-suppression		
Tracking (MAPS)	36B					400	800	17	26	26			
Tracking (MPGD)				202k		118	236	5	1	1	Λ		
Calorimeters	500M		104k			451	1132	19	502	28	Calorimeter cluster building (CPU/GPU?)		
Far Forward	300M	2.6M	170k			178	492	8	15	8			
Far Backward	82M		2k			50	100	4	150	1	FB high-rate tracker: Tracklet building (CPU/GPU?)		
PID (TOF)		7.8M				500	1500	17	31	1			
PID Cherenkov			320k		140k	1283	2566	30	1275	32	dRICH: Collision throttling (2 tier DAM FPGA)		
TOTAL	36.9B	10.4M	596k	202k	140k	2980	6826	100	2,000	96			

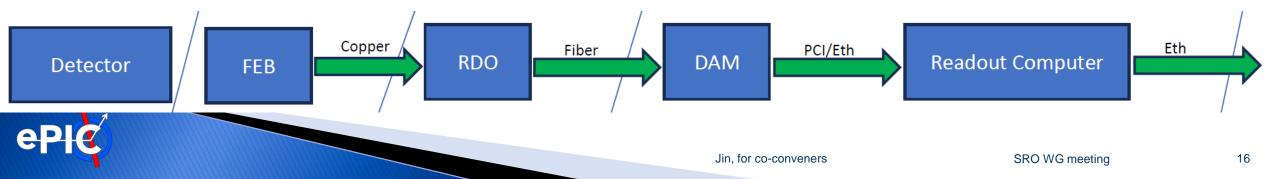

EPIC Detector Scale and Technology Summary:

Detector System	Channels	RDO	Gb/s (RDO)	Gb/s (Tape)	DAM Boards	Readout Technology	Notes
Si Tracking: 3 vertex layers, 2 sagitta layers, 5 backward disks, 5 forward disks	7 m^2 36B pixels 5,200 MAPS sensors	400	26	26	17	MAPS: Several flavors: curved its-3 sensors for vertex Its-2 staves / w improvements	Fiber count limited by Artix Transceivers
MPGD tracking: Electron Endcap Hadron Endcap Inner Barrel Outer Barrel	16k 16k 30k 140k	8 8 30 72	1	.2	5	uRWELL / SALSA uRWELL / SALSA MicroMegas / SALSA uRWELL / SALSA	64 Channels/Salsa, up to 8 Salsa / FEB&RDO 256 ch/FEB for MM 512 ch/FEB for uRWELL
Forward Calorimeters: Forward Calorimeters: Barrel Calorimeters: Backward Calorimeters: LFHCAL HCAL insert* ECAL W/SciFi HCAL ECAL SciFi/PB ECAL ASTROPIX NHCAL ECAL (PWO)	63,280 8k 16,000 7680 5,760 500M pixels 3,256 2852	74 9 64 9 32 230 18 12	502	28	19	SiPM / HG2CROC SiPM / HG2CROC SiPM / Discrete SiPM / HG2CROC SiPM / HG2CROC Astropix SiPM / HG2CROC SiPM / HG2CROC SiPM / Discrete	Assume HGCROC 56 ch * 16 ASIC/RDO = 896 ch/RDO 32 ch/FEB, 16 FEB/RDO estimate, 8 FEB/RDO conserve. HCAL 1536x5 *HCAL insert not in baseline Assume similar structure to its-2 but with sensors with 250k pixels for RDO calculation. 24 ch/feb, 8 RDO estimate, 23 RDO conservative
Far Forward: B0: 3 MAPS layers 1 or 2 AC-LGAD layer 2 Roman Pots 2 Off Momentum ZDC: Crystal Calorimeter 32 Silicon pad layer 4 silicon pixel layers 2 boxes scintillator	300M pixel 1M 1M (4 x 135k layers x 2 dets) 640k (4 x 80k layers x 2 dets) 400 11,520 160k 72	10 30 64 42 10 10 10 2	15	8	8	MAPS AC-LGAG / EICROC AC-LGAD / EICROC AC-LGAD / EICROC APD HGCROC as per ALICE FoCal-E	3x20cmx20cm 600^cm layers (1 or 2 layers) 13 x 26cm layers 9.6 x 22.4cm layers There are alternatives for AC-LGAD using MAPS and low channel count DC-LGAD timing layers
Far Backward: Low Q Tagger 1 Low Q Tagger 2 Low Q Tagger 1+2 Cal 2 x Lumi PS Calorimeter Lumi PS tracker	1.3M pixels 480k pixels 700 1425/75 80M pixels	12 12 1 1 24	150	1	4	Timepix4 Timepix4 (SiPM/HG2CROC) / (PMT/FLASH) Timepix4	
PID-TOF: Barrel Endcap	2.2M 5.6 M	288 212	31	1	17	AC-LGAD / EICROC (strip) AC-LGAD / EICROC (pixel)	bTOF 128 ch/ASIC, 64 ASIC/RDO eTOF 1024 pixel/ASIC, 24-48 ASIC/RDO (41 ave)
PID-Cherenkov: dRICH pfRICH DIRC	317,952 69,632 69,632	1242 17 24	1240 24 11	13.5 12.5 6	28 1 1	SiPM / ALCOR HRPPD / EICROC (strip or pixel) HRPPD / EICROC (strip or pixel)	Worse case after radiation. Includes 30% timing window. Requires further data volume reduction software trigger

By Jeff Landgraf, presented on Aug 22 WG meeting [link], Updated Sept 19

Detector			Channels		RDO	Fiber	DAM	Data	Data		
Group	MAPS	AC-LGAD	SiPM/PMT	MPGD	HRPPD				Volume (RDO) (Gb/s)	Volume (To Tape) (Gb/s)	
Tracking (MAPS)	36B					400	800	17	26	26	
Tracking (MPGD)				202k		118	236	5	1	1	
Calorimeters	500M		104k			451	1132	19	502	28	
Far Forward	300M	2.6M	170k			178	492	8	15	8	
Far Backward	82M		2k			50	100	4	150	1	
PID (TOF)		7.8M				500	1500	17	31	1	
PID Cherenkov			320k		140k	1283	2566	30	1275	32	
TOTAL	36.9B	10.4M	596k	202k	140k	2980	6826	100	2,000	96	

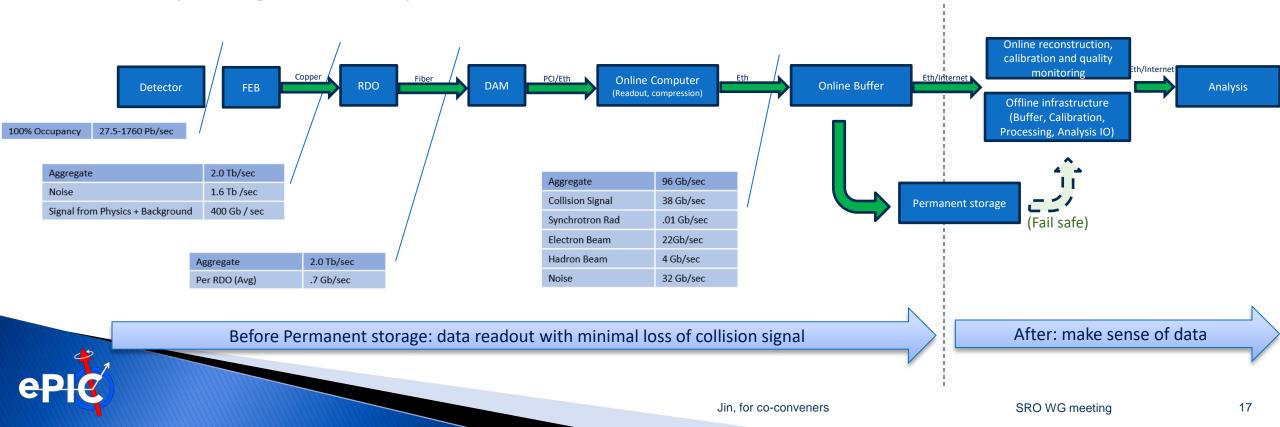
Summary of Channel Counts


ePIC

Jin, for co-conveners

Streaming DAQ – Computing : consideration 1

For kickstart the discussion, please interrupt to discuss at any moment


- Streaming DAQ naturally leads to no clear separation of streaming DAQ and computing
 - Streaming DAQ relies on data reduction computationally (i.e. no real-time triggering) → Any data reduction in streaming DAQ is a computing job
 - Which could be done at ASIC, FPGA, online-computers
 - Example could be zero-suppression (simple or sophisticated), feature extraction (e.g. amplitude in calo and tracklet in FB tracker)
 - Require minimal loss of collision signal; any data reduction require stringent bias control/study
- <u>Citing ePIC software principles https://eic.github.io/activities/principles.html</u>: We will have an unprecedented compute-detector integration:
 - We will have a common software stack for online and offline software, including the processing of streamed data and its time-ordered structure.
 - We aim for autonomous alignment and calibration.
 - We aim for a rapid, near-real-time turnaround of the raw data to online and offline productions.

Streaming DAQ – Computing : consideration 2

For kickstart the discussion, please interrupt to discuss at any moment

- Sooner or later, a copy of data is stored and saved for permanent storage
- This stage of first permanent storage could be viewed as a DAQ computing boundary

Streaming DAQ – Computing : consideration 2

For kickstart the discussion, please interrupt to discuss at any moment

- Paid by project
- Has a hard archival limit (O(100Gbps)) from both throughput and tape cost
- Main goal on "online-computing" is data reduction to fit output pipeline
- Stringent quality and bias control for any lossydata reduction
- As minimal reduction as affordable to
 - (1) reduce unrecoverable systematic uncertainty
 - (2) reduce complexity, cost, failure modes.
 - Any processing beyond minimal need a physics motivation to justify project cost/schedule reviews (and possible descope reviews)
- High availability: any down time cost \$O(0.1)M/day → usually on host lab

- Driven by collaboration, operation fund
- We would like to complete within a small latency (<O(1)week)
 - Usually driven by calibration and debugs
- Main goal on "offline-computing" is to bring out physics objects for analysis
- Quality control for reconstruction
- Can afford to redo reconstruction if new algorithm or with new physics insights (at cost of time, effort and computing)
- Can wait for short interruptions and can be distributed

Before permanent archival: DAQ

After permanent archival: Computing

Why streaming DAQ/computing?

	EIC	RHIC	LHC → HL-LHC
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A$, $A + A$	p + p/A, $A + A$
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV
Bunch spacing	10 ns	100 ns	25 ns
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} \rightarrow 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
x-N cross section	50 μb	40 mb	80 mb
Top collision rate	500 kHz	10 MHz	1-6 GHz
dN _{ch} /dη in p+p/e+p	0.1-Few	~3	~6
Charged particle rate	4M N _{ch} /s	60M <i>N</i> _{ch} /s	30G+ <i>N</i> _{ch} /s

- Events are precious and have diverse topology \rightarrow hard to trigger on all process
- Signal data rate is moderate → possible to streaming recording all collision signal, event selection in offline
 reconstruction using all detector information after calibration

Expround and systematic control is crucial \rightarrow avoiding a trigger bias; reliable data reduction