

EIC 2nd Detector -- Tracking

Cheuk-Ping Wong

04-09-2024

The Original Direction

- Improve the backward momentum resolution to below 1%
 - very challenging
 - Working on a simulation note to summarize the study

New Direction

- Shifting the focus from an all-silicon design to a mixed-tracking technologies design
 - Pros: (1) More hits: better pattern recognition, redundancy, resistance against backgrounds (2) Complementary
 - Cons: higher material budget
- Potential tracking technologies: scintillating fiber, drift chamber, TPC... Other Suggestions are welcome!

Increasing the number of hits could improve tracking resolution

NIMA 910 (2018) 127

Resolution from detector pixel

 $\frac{\Delta p}{p_{res}} = \frac{\sigma_{pix} \cdot p}{0.3BL^2} \sqrt{\frac{720N^3}{(N-1)(N+1)(N+2)(N+3)}}$

Resolution from multiple scattering

$$\frac{\Delta p}{p}_{ms} = \frac{N}{\sqrt{(N+1)(N-1)}} \frac{0.0136\sqrt{X/X_0}(1+0.038 \cdot \ln\sqrt{X/X_0})}{0.3BL \cdot \frac{p}{\sqrt{m^2+p^2}}}$$

Scintillating Fiber (LHCb)

Double-clad polystyrene fiber

- D=250 um \rightarrow hit pos. res. < 70 um
- 8k photons per MeV of ionization energy
- Excited electron decay times=2.4 ns
- Attenuation length~3.5 m

Hamamatsu SiPM (MPPC S13552 - H2017)

- Pixel size ~ 60 um
- <10% noise cluster rate with front-end clustering and -50 °C cooling using Novec

Material budget=1.1% x 12 layers

Technology advancement

- Scintillating fiber with improved radiation hardness
- Modify claddings to boost light yield
- Cryogenic cooled SiPMs with microlenses for light recovery

Drift Chamber (IDEA/MEG II)

Reduction of material

by storing helium gas in the wire support endplates IDEA: $0.016X_0$ ($0.05X_0$) in the barrel (forward and backward) region

More uniform equipotential surface

A high ratio of the field to sense wires and a high wire density by enmeshes the positive and negative stereo angle orientations IDEA: 4 m long, r = 35-200 cm, 400k wires, res ~ 100 um

<u>PID capability</u> with the cluster counting method Adding timing information to the wires to count individual ionizing events of the traversing track and dE/dx information

Technology advancements

- Carbon-fiber wire vs tungsten wire reduce X/X₀ by a factor of 5
- Low mass service/cooling structures
- See Andy's slides from last week

drift tube

ionization clusters

TPC/mini TPC

GridPIX aka miniTPC

- Basic idea: Small ΔR TPC with Si Pixel readout on one endcap
 - ▶ PID (*π* − *K* − *p*) from 100 MeV/c to 800 MeV/c
 - Tracking with large number of hits (pattern recognition)
 - Works only in barrel (field!)
- GridPIX
 - Avalanche grid in front of 55 x 55 µm₂ pixels.
 - >90% efficiency for single electrons.
 - Small area is not particularly expensive: 1800 chips (order/produce/test 3600) = \$716k
 - Careful: 1.2-5.4 kW of power
 - Services bulky: Gas, power, cooling
 - Realistic X/X₀?

https://indico.bnl.gov/event/18414/contributions/76157/attach ments/47563/80668/EIC_Technology_Inventory_Temple.pdf

Reality check:

- Very compelling for D2
- Provided tracking an dE/dx (compare with ToF/AC-LGAD)
- Excellent Pattern recognition
- Less sensitive to backgrounds
- Generic R&D ongoing
- Need to see concrete prototype

LDT Fast Simulation

- ePIC craterlake silicon detector as baseline
 - Barrel: cylindrical, Silicon layer (option for TPC)
 - Forward/backward: Silicon disk
- Goals
 - Validating the LDT simulation
 - Implement TPC in the detector setup

Summary

- Shift focus on mixed-tracking technologies design in tracking simulation
 - Reliable tracking
 - Complementary
- LDT fast simulation
 - Working on simulation validation
 - Implement TPC later on

