

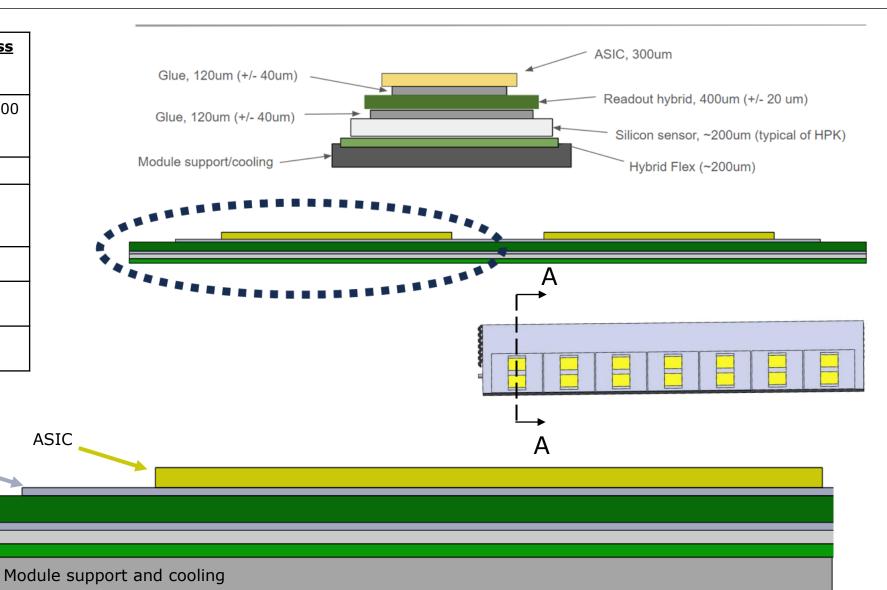
AC-LGAD ToF: halfSTAVE prototype updates and heat transfer analysis for miniSTAVE and fullSTAVE

03 April 2024

Sushrut Karmarkar, Andreas Jung

<u>UG students</u> – Yuvraj Chauhan, Pau Simpson, Sam Langley-Hawthorne, Xuli You, Alexandre Chevalier

Sensor cross-section set up – Ansys HT


<u>Part Name</u>	Thermal Conductivity (W/mK)	<u>Thickness</u> (µm)
ROC and ASIC (PCB/Kapton properties)	0.97	400 and 300
Silicon Module	148	200
Carbon Face Sheet	Kxx - 180 Kyy - 150 Kzz - 1.36	200
Carbon Foam	25	6420
Loctite Epoxy (Glue)	1.28	120
Stainless Steel Pipe	16	716

Hybrid Flex

Readout Hybrid

Glue

Silicon Sensor Glue

Water cooling at +18°C – miniSTAVE and fullSTAVE

Heat transfer coefficient estimated to be (h) 1000 W/m²K decaying down to 360 W/m²K (at outlet) --

- Need better pressure inlet and pressure outlet understanding for refining the simulations further
- Heat transfer coefficients in a pipe for water at room temp and pipe diameter of 5 mm used for the current estimation of h.

Please can Yi/NCKU help with this – cross check my numbers ?

$$h = \frac{k \cdot Nu_L}{L}$$

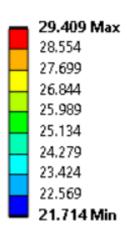
Nusselt number (Nu_L)

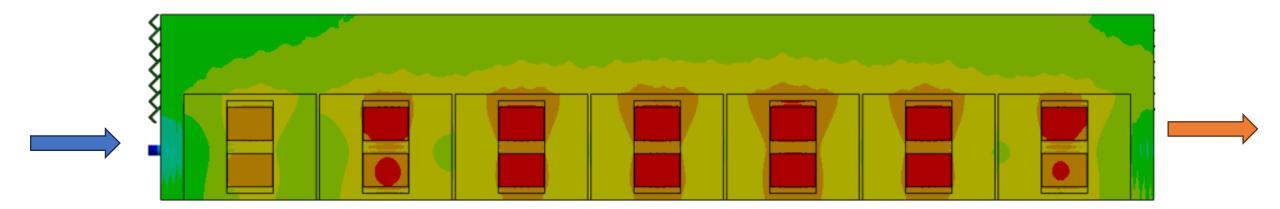
$$= \frac{\left(\frac{f}{8}\right)(Re - 1000)Pr}{1 + 12.7\left(\frac{f}{8}\right)^{0.5}((Pr)^{\frac{2}{3}} - 1)}$$

For laminar flow in a pipe at room temp we found out the Prandtl (Pr) and Reynolds (Re) numbers using (Gnielinski,1976) and first Petukhov eq. (1970):

$$f = (0.790 \ln Re - 1.64)^{(-2)}$$

For flow conditions Re ~ 250,000


L = length (function of x); k = conductive heat transfer coefficient (W/mK)


Water cooling at +18°C – miniSTAVE

Unit °C

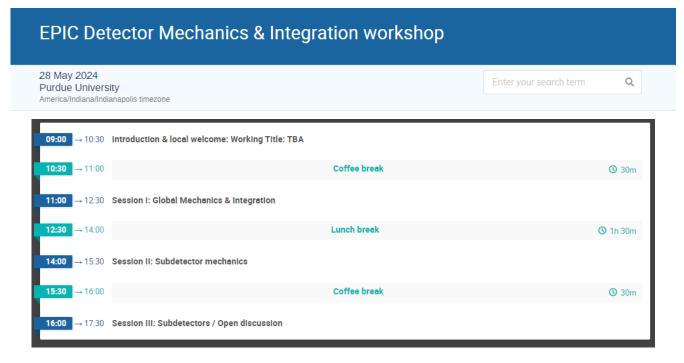
Convective heat loss from edge of the stave affects the temperature profile for the last sensor

Full length stave simulations for HT – 2.7 m stave

halfSTAVE (~1m) prototyping efforts – co-cure

Next steps →

- 1. Bond the honeycomb
- 2. Router CNC the height of the honeycomb + carbon foam
- 3. Groove for cooling pipe
- 4. Trim structure into half
- 5. Bond pieces to make a ~1m halfSTAVE



Please consider submitting talk/poster for the conference & visiting our labs at Purdue University!

Satellite event -https://indico.cern.ch/event/1371986/

Forum on Tracking Detector Mechanics link – https://indico.cern.ch/event/1336746/