Greedy ambiguity resolution solver in ElCrecon

Joint track and vertex reconstruction and tracking WG meeting

Minjung Kim (UC Berkeley / LBNL / CFNS, Stony Brook U.) 18. Apr. 2024 (Thu.)

Duplicate tracks in realistic seeding

 $N_{trk} \propto N_{hits}C_3$

Joint track and vertex reconstruction and tracking WG meeting 18. Apr. 2024 (Thu.)

• Seed is made with 3 hits \rightarrow several seeds can be found along one trajectory, leading duplicate tracks • Correlation between a number of generated hits (N_{hit}) and a number of duplicate tracks (N_{trk}):

Reduction by requiring using middle space point only once (as a middle space point), but still there

Greedy ambiguity resolution solver

• Greedy ambiguity resolution solver:

- 1. Iterate trajectories and find the trajectory having number of shared hits larger than certain threshold
- 2. Find the competetors and keep better quality trajectory only
- 3. Repeat till you have trajectories having shared hits below certain threshold

Implementation to ElCrecon

From ACTS: Core/include/Acts/AmbiguityResolution/

GreedyAmbiguityResolution.ipp

- Merge request ongoing!!

Performance QA setup

- ep collisions at 18x275 with minQ2=1000 + beam Effects
- 50 events simulated with "epic_craterlake.xml"
- Matching between MC particle and reconstructed track:

Hit level matching: check the source of hits associated with the track and matching to the particle giving maximum contribution

Impact of greedy ambiguity resolution solver

- Less than 1% of duplicate tracks found after filtering

Joint track and vertex reconstruction and tracking WG meeting 18. Apr. 2024 (Thu.)

In average, about 1/3 of tracks left after filtering using greedy ambiguity resolution solver

Impact of greedy ambiguity resolution solver

- No qualitative change in purity of reconstructed tracks
- No efficiency loss in reconstruction

Realistic seeding vs. true seeding: pT

Large discrepancy at low pt below 0.5 GeV/c

Compatible in higher pT

Realistic seeding vs. true seeding: eta

Eta dependent discrepancy mainly comes from the correlation of pT

Reco. performance compatible with each other in higher pT

Tracking efficiency: denominator from MC particles

Tracking efficiency: denominator from MC particles

Tracking efficiency from realistic seeding

Tracking efficiency from true seeding

Joint track and vertex reconstruction and tracking WG meeting 18. Apr. 2024 (Thu.)

Need better statistics! But different seeding methods give similar trend except for

Backup

Reminder: J/ ψ photoproduction (5 < Q² < 10) in EIC

Coherent production of $eA \rightarrow eA'J/\psi \rightarrow e(e+e)A'$ with eSTARLight

Joint track and vertex reconstruction and tracking WG meeting 18. Apr. 2024 (Thu.)

Duplicate track rejection in photoproduction events

- Event-by-event tracking efficiency estimated:
- Greedy ambiguity resolution solver works well!! (No events with duplicate tracks!) True seeding

Joint track and vertex reconstruction and tracking WG meeting 18. Apr. 2024 (Thu.)

number of reconstructed tracks

number of generated final state particles

Realistic seeding

Transverse momentum resolution

• For MC particles in small transverse momentum (p_T) range:

- Find the matching tracks
- Calculate the deviation of reconstructed p_T w.r.t. truth p_T
- Take the RMS or the width from gaussian fit as the resolution
- Larger negative tail due to the multiple scattering/Bremsstrahlung

First look of tracking efficiency of the ePIC tracker

- Most of efficiency lost in low p_T below 200 MeV/c
- Limited kinematic coverage of photoproduction events

Joint track and vertex reconstruction and tracking WG meeting 18. Apr. 2024 (Thu.)

First look of tracking efficiency of the ePIC tracker

- Fully efficiency above 2 GeV/c
- Tracking efficiency: <u>number of reconstructions</u>

Joint track and vertex reconstruction and tracking WG meeting 18. Apr. 2024 (Thu.)

number of reconstructed, matched tracks number of generated final state particles

First look of tracking efficiency of the ePIC tracker

- No eta dependence found within -2.5 < eta < 2.5
- Tracking efficiency: <u>number of reconstructed, matched tracks</u> number of generated final state particles

Joint track and vertex reconstruction and tracking WG meeting 18. Apr. 2024 (Thu.)

Moving towards complicated environment

of events **MC** particles 1000 True seeding **Realistic seeding** 600 J/ψ→e+e-400 200 3.5 4.5 # of tracks (particles)

- More complicated in DIS

of events

Efficiency loss in true seeding/realistic seeding: No kinematic cuts on MC particles yet Slightly worse performance in realistic seeding: over-suppressed by duplicates rejection?

High Q² DIS events: seed-level QA

Pseudorapidity

- MC particles: stable particles generating at 3 hits on silicon trackers

Pseudorapidity

 Much larger entries w.r.t. MC particles in realistic seeding: duplicate seeds visible as expected Larger entries in true seeding w.r.t. MC particles in true seeding, with seeds in BO acceptance

Caution for true seeding usage

Pseudorapidity

Pseudorapidity

Larger entries in true seeding w.r.t. MC particles in true seeding, with seeds in BO acceptance True seeding takes PYTHIA generated charged particle with min. pT: doesn't guarantee whether they are really trackable in the detector! min. # of generated hits for input MC particles?

Ambiguity Resolution in ElCrecon

- algorithm/tracking/AmbiguitySolver.cc(l std::vector<const ActsExamples::ConstTrackContainer*> inp Taking CKFTracking output(s)
 - Call algorithm and process
 - tracking output(s) for seamless transition for the rest of the reco. chain)
- algorithms/tracking/AmbiguitySolverConfig.h
 - Configuration helper for the algorithm:
 - max. shared hits, max. iteration and min. # of measurements per track
- global/tracking/AmbiguitySolver_factory.h

h):	std::tuple<
out_container	std::unique_ptr <edm4eic::trajectorycollection>,</edm4eic::trajectorycollection>
	std::unique_ptr <edm4eic::trackparameterscolle< td=""></edm4eic::trackparameterscolle<>
	std::unique_ptr <edm4eic::trackcollection>,</edm4eic::trackcollection>
	std::vector <actsexamples::trajectories*>,</actsexamples::trajectories*>
	std::vector <actsexamples::consttrackcontainer< td=""></actsexamples::consttrackcontainer<>
	>

Convert output(s) from the algorithm to standard ElCrecon output (compatible with

Factory for the algorithm; to be called after "CKFtracking" inside full tracking chain

