EEEMCal: inner support geometry and embedded background study

Dmitry Kalinkin

April 11, 2024

Geometry update

Slides from Carlos

CAD drawing for the collar

Received CAD drawing for the collar from Carlos

- Reverse-engineered into a DD4hep geometry https://github.com/eic/epic/pull/704
- Issue 1: Obvious overlaps with the cells
- Issue 2: Surrounding cells now float in the air (used to be full-copper). What is the new material in-between?

Next steps for DD4hep implementation

Left: current (solid shading), Center: new collar (wireframe), Right: new collar + shift cells up

Just shifting cells up doesn't fit like on the slides

Background embedding

Quick reminder

- Passing --squashTime option to the signal_background_merger.py fixes missing signal in the calorimeters.
- With that, I'm continuing the study of my full event emebedding sample.

Truth electron distributions

This is based on MCParticles

Funky φ can't be due to the crossing angle (see slide 4 of <u>this</u>, also peaks of the same height)

Truth electron distributions: those with clusters This is based on MCParticles with associated clusters in EcalEndcapN

Truth electron distributions: those with clusters This is based on MCParticles with associated clusters in EcalEndcapN, E/p > 0.8

E/*p* distributions

This uses truth associations to match $\mathsf{EcalEndcapN}$ clusters to the electrons among MCParticles

Effect on the resolution is small, would be hard to quantify without more statistics