

CeC Time Meeting

CeC Experiment at RHIC

Jean Clifford Brutus April 30th, 2024

CeC work with off maintenance day access

- FPC window dry air connections
- 500 MHz hybrid H dummy load leak diagnosis (still need to be repaired)
- Cavity water manifold connection
- Coax measurements and custom length pieces made
- FPC 2 repair
- FPC 1 coax installation
- H/V corrector installation and connection to PS
- Magnetometer installation

Maintenance Day April 29th

- Cryo repair
- FPC 2 coax installation
- Water manifold
- Inspection camera installation
- Tuner cable connections and test? Moved to Maintenance Day May 14th

500MHz – FPC 2 air side inner conductor

New Air Side IC Adapter

Copper RF spring ring

Machined air side IC

Design and Tunnel Work prior to cavity arrival

- Design vacuum components
- Finalize beamline layout
- Order vacuum parts
- Design of coax layout
- Order coax needed
- Disconnect BPM
- Disconnect H/V Corrector
- Locate LEReC replacement BPM
- Transfer BPM to vacuum group for cleaning
- Remove H/V Corrector
- Disconnect and remove water manifold
- Submit drawings for mounting plates to shop
- Submit stand extension drawing to shop
- Lock/Out PA
- Disconnect and remove coax.
- Remove waveguide shorts
- Determine window requirement for dry-air (new line)?
- Determine flow requirements for flow switch
- Disconnect existing tuner (Find out connection/pin out for new tuner from RI)
- Prepare clean room
- Vent cavity and disconnect from beamline
- Blank and pump out vented sections
- Stand and support fabrication completed
- Remove cavity and ion pump
- Modify red base frame for new setup
- Modify ion pump base plate for new setup
- hybrid H test
- Reinstall hybrid H and coax connections as close as possible
- without interfering with installation
- Install new frame extension
- Reinstall ion pump on frame
- Reinstall clean room structure
- Run new dry air line from 1002 to tunnel 90% complete
- order all adapters from manifold to cavity systems

500MHz Cavity

Cavity acceptance Work:

- Design and fabrication of clean room mobile stand Jan 15th-29th
- Cavity arrival Jan 29th -Feb 2nd
- Leak check of cavity and tuner Feb 5th-6th
- Survey group to pre-survey cavity Feb 7th-9th
- Tuner to Lenny D. for pre-wiring Feb 7th Feb 9th
- Pressure test water line Feb 12th-16th
- FPC 1 arrival at BNL March 18th
- FPC 1 Leak check March 18th
- RF test with FPC 1 March 19th
- Cleaning of cavity and components March 19th March 22nd
- pre-assemble cavity, tuner, pickup, valves and FPC 1 in clean room
- move cavity to tunnel and install on stand March 25th
- survey cavity on beam axis March 25th
- Install FPC frame support extension Mach 18th
- Setup clean room March 25th March 30th
- Connect to beamline, gauges, right angle valve and ion pump April 1st April 5th
- FPC 2 arrival at BNL, leak check, installation and RF test April 8th
- pump out upstream and downstream beamlines and leak check April 5th-7th
- Water Manifold pre-fit and valve installation April 8th
- Bakeout preparation and start bake out April 8th-17th
- end bake out April 18th
- reinstall H/V Corrector April 19th
- Rewire H/V Corrector April 19th
- Continue connect water to cavity Maintenance Day 2 April 29th
- FPC 2 Repair Maintenance Day 2 April 29th
- Coax installation Maintenance Day 2 April 29th
- Turn on water and check flow switches Maintenance Day 3 May 14th
- Connect and test tuner Maintenance Day 3 May 14th
- Arc detector and heliax cable connection, glue RTDs Maintenance Day 3 May 14th
- Connect BPM, ICT, flow switches and connect RTDs Maintenance Day 3 May 14th
- Connect BPM, ICT, flow switches and connect RTDs Maintenance Day 4 May 22nd
- AESRC Walkthrough Maintenance Day 5 June 4th

April.						
Sun	Mon	Tues	Weds	Thurs	Fri	Sat
21	22	23 0001 Yellow	24	25	26	27
28	29 Short Maintenance	30				

 Sun
 Mon
 Tues
 Weds
 Thurs
 Fri
 Sat

 1
 2
 3
 4

 5
 6
 7
 8
 9
 10
 11

 12
 13
 14
 15
 16
 17
 18

 19
 20
 21
 22 Short Maintenance
 23 Physics?
 24 Physics?
 25

 26
 27
 28
 29
 30
 31

May:

Summer 2023 Shutdown

at ...

18

#	Work	Note
1	Stabilize laser pulses (RMS below 1%)	Patrick I. – waiting on quote for new board to fix pule shape. RMS 1.3% is the best at the moment.
2	Bake-out of the HP dump in diagnostics beamline	Cliff - Instrumentation, vacuum water, RF and mechanical group
3	Add 3 additional PS for Solenoids 5,6 and 7 in. the CeC section – it will improve our abilities to check alignment of CeC solenoids	Anthony D. tunned all PS and able to control all of them thru Pet page,
4	Procedures	Cliff
5	Polarimeter	Cliff - Instrumentation, mechanical group
6	500 MHz Symmetric Cavity	Cliff - Next summer shutdown 2023 - PO pinned/ SOW and Specs approved
7	Low Power Dump Current monitor	Matt designed an amplifier circuit to connect directly to the new Faraday Cup to amplify and buffer the signals. There will be a fast output showing the pulses and a slower output showing the average current of a bunch train.
8	New Inspection Mirror	Cliff / Lenny D Connected to MPS/ Add camera/ change ring light LDR2-50IR2-940
<mark>9</mark>	Shunt resistor	To measure high current – Igor and Vlad need to give clear direction
10	Adjust laser power in individual beamlets to required levels at the gun laser table. Demonstrate that beam powers in all beamlets is proportionally controlled by main laser power control	Patrick I.
11	Optimize aperture for the laser beam transport from the gun table the cathode.	Patrick I.
12	Profile monitor gc2-amp.yag elimination does not work properly	Lenny D.
<mark>13</mark>	Iris at camera at the beam-dump YAG does not work	Lenny D.
14	Illumination of the SRF gun cathode should be fixed	Lenny D there is a huge bright "blobs" of reflected light from surrounding environment which obstruct observation for the cathode
15	BPM2 in LEBT has large offset	suspected feedthrough is fine and possible reason is poorly tightened connector
16	Consider options – and implement if possible - for improving vacuum in the laser cross, including possibility of cleaning it up during 500 MH z cavity installation	Cliff & Vacuum Group
17	Consider options – and implement if possible – for improving vacuum in the diagnostics beamline	No change
18	Lacer Trailer AC Repair	Completed

Procedures

Active Procedures

Procedure No.	Title	Revision #	Status
22.2	OPERATIONS ORGANIZATION AND ADMINISTRATION		Section_Header
22.2.1	CeC PoP Experiment Operations Organization and Administration	1	Active
22.5	CeC PoP OPERATIONS		Section_Header
22.5.4	CeC PoP Operating Sequence	2	Active
22.5.5	Procedure for Configuration Control of CeC PoP Critical Magnets	2	Active
22.5.5.a	GeC PeP Magnetic Configuration Checklist	4	Active
22.8	SUBSYSTEMS: RF AND SRF, VACUUM, WATER, LASER & CONTROLS		Section_Header
22.8.1	RF		Section_Header
22.8.4	LASER		Section_Header
22.8.5	CONTROLS		Section_Header

Procedure No.	Title	Revision #	Status
24.2	OPERATIONS ORGANIZATION AND ADMINISTRATION		Section_Header
24.5	LEReC OPERATIONS		Section_Header
24.8	SUBSYSTEMS: DC GUN, RF AND SRF, VACUUM, WATER, LASER & CONTROLS		Section_Header
24.8.1	GUN		Section_Header
24.8.1.5	LEReC DC Multiplier Test Chamber SF6 Handling: Evacuating Air or Nitrogen Gas, Filling SF6 Gas, Suctioning SF6 and Storing SF6 Gas	0	Active
24.8.1.6	LEReC DC Gun Multiplier Test Chamber SF6 Pump Out Log Sheet	0	Active
24.8.1.7	LEReC DC Gun HV Conditioning	0	Active
24.8.2	VACUUM		Section_Header
24.8.4	LASER		Section_Header
24.8.4.7	Procedure for Access to 2zl During High Power Laser Alignment	2	Active
24.8.5	CONTROLS		Section_Header
24.8.6	RF		Section_Header
24.8.7	INSTRUMENTATION		Section_Header
24.8.7.1	Safe Work Practices for Diagnosing LEReC Faraday Cup Relay Chassis Problems	0	Active

Inactive Procedures

22.5.2	Cec PoP Low-Power Testing Sequence Cancel	
22.5.3	CeC PoP Commissioning Sequence Cancel	_
22.8.1.2	Turning on the 112 MHz RF Amplifier Cancel	-
22.8.1.3	Turning on the 701MHz RF Amplifier Cancel	-
22.8.4.1	Coc Pop Lasor System Operation Cancel	-
22.8.5.1	CeC PoP Machine Protection System (MPS) Test Procedure	w/ CAD procedures
28.2.1	Laser SOP OPPIS B930 (BNL# C-A-930-1)	_
23.2.5	Polarized Helium 3 Laser System (BNL# C-A-930-5)	
28.2.7	LPM Laser Lab (BNL# C-A-930-7)	
2 8.4.1	Continuum Surelite II-10 Laser SOP (BNL# C-A-1008 1)	
28.6.1	Laser Profile Monitor for BLIP Beam Line (LPM) (BNL #CA-931-1)	
23.7.2	Building 1002, Power on Fiber, e-gun	w/ CAD procedures
23.7.3	Lesor Alignments in the Coherent Electron Cooling Ring Location Cancel	
2 8.8.2	Power on Fiber, e-gun @ SBU	
24.5.1	LEReC Magnetic Configuration Procedure	-
24.5.1.a	LEReC Magnetic Configuration Checklist	-
24.5.2	L ERoC DC Cun Beam Testing Sequence	_
24.8.1.1	LEReC DC Gun SF6 Pressure Chamber Gas Handling: Evacuating Air or Nitrogen Gas, Filling SF6 Gas, Suctioning SF6 Gas and Storing SF6 Gas CJ	w/ CAD procedures
24.8.1.1.a	LEreC DC Gun Pressure Chamber Pumpout Log Sheet CJ	w/ CAD procedures
24.8.1.2	Extraction and Insertion Procedures for the LEReC DC Gun Molybdenum Puck with a Grown Bi-Alkali (K2NaSb) Cathode	w/ CAD procedures
24.8.1.3	Turn On/Turn Off Instructions for LEReC DC Gun	-
24.8.4.1	L EReC Laser System Operation Cancel	-
24.8.4.5	Building 1002F Laser Interlock System	w/ CAD procedures
24.8.4.6	LEReC and CoC ID2 Lacor Enclosure Integrity Accurance	
24.8.5.2	MPS Configuration Management Procedure	_
24.8.6.3	Booster SRF Amplifier Turn-On/Turn-Off Sequence Cancel	-
24.8.6.4	2.1 GHz RF Amplifier Tam-On/Tam-Off Sequence Cancel]
24.8.6.5	9 MHz RF Amplitter Turn-On/Turn-Off Sequence Cancel	1
24.8.6.6	704 Warm MHz RF Amplifier Turn-On/Turn-Off Sequence Cancel	1
24.8.6.7	RF and electroctatic device RS LOTO Precedure	1

Procedures

M		U	L	-	0			-	N	L	IVI	TN .	0	r	Ч
									Inactive/Ca						
	Procedure	•	Revision	Review	w		Responsible Owner	Current	ncelled				NEEDED AFTER		
Chapte	er Num.	Revisi	io Date	Type	OPM Type	Title	List	Status	Date	PPA?	NEW STATUS PR	IORITY	RHIC	COMPLETED	
						CeC PoP Experiment Operations Organization and					Cancel - Need			250	
22	22.2.1	1	2/26/2019	5 yr.	Administrative	Administration	Jing, Yichao	Active		No	as Reference		No	YES	
											Cancel - Need				
22	22.5.4	2	9/22/2022	3 yr.	Procedure	CeC PoP Operating Sequence	Pinayev, Igor	Active		No	as Reference		No	YES	
						Procedure for Configuration Control of CeC PoP Critical					Cancel - Need			NE0	
22	22.5.5	2	10/20/2022	3 yr.	Procedure	Magnets	Pinayev, Igor	Active		No	as Reference		No	YES	
											Cancel - Need			250	
22	22.5.5.a	4	11/22/2022	5 yr.	Checklist/Form	CeC PoP Magnetic Configuration Checklist	Pinayev, Igor	Active		No	as Reference		No	YES	
22	22.8.5.1	1	6/14/2019	3 yr.	Procedure	CeC PoP Machine Protection System (MPS) Test Procedure	Bachek, Paul	Inactive	9/5/2023	No	Active	1	No	YES	
							Hammons, Lee ;								
24	24.5.1	0	2/8/2017	3 yr.	Procedure	LEReC Magnetic Configuration Procedure	Kayran, Dmitry	Inactive	8/15/2023	No	Active		No		CANCELLED FOR CEC, DOES LEREC STILL NEED THIS?
							Hammons, Lee ;								
24	24.5.1.a	1	1/19/2018	3 yr.	Procedure	LEReC Magnetic Configuration Checklist	Kayran, Dmitry	Inactive	8/15/2023	No	Active		No		CANCELLED FOR CEC. DOES LEREC STILL NEED THIS?
						LEReC DC Gun SF6 Pressure Chamber Gas Handling:									
						Evacuating Air or Nitrogen Gas, Filling SF6 Gas, Suctioning SF6									
24	24.8.1.1	0	11/1/2016	3 yr.	Procedure	Gas and Storing SF6 Gas	Liaw, Chong-Jer	Inactive	8/15/2023	No	Active		No		
24	24.8.1.1.a	0	11/1/2016	5 yr.	Checklist/Form	LEreC DC Gun Pressure Chamber Pumpout Log Sheet	Liaw, Chong-Jer	Inactive	9/5/2023	No	Active		No		
						Extraction and Insertion Procedures for the LEReC DC Gun	Liaw, Chong-Jer ;								Authors should be Mengjia Gaowei & Robert D. Lehn. According to CJ it was recently updated by them.
24	24.8.1.2	1	9/19/2017	3 vr.	Procedure	Molybdenum Puck with a Grown Bi-Alkali (K2NaSb) Cathode	Wang, Erdong	Inactive	9/5/2023	No	Active		Yes		Requiered after RHIC. According the Erdong high current gun R&D will continue for EIC
						LEReC DC Multiplier Test Chamber SF6 Handling: Evacuating									
						Air or Nitrogen Gas, Filling SF6 Gas, Suctioning SF6 and Storing									
24	24.8.1.5	0	1/14/2021	3 yr.	Procedure	SF6 Gas	Liaw, Chong-Jer	InProgress		No	Active		No		should all DC gun procedures remain active for EIC R&D? if yes, we ned to talk to Ray regarding SAD for this test,
						LEReC DC Gun Multiplier Test Chamber SF6 Pump Out Log					Cancel - Need				
24	24.8.1.6	0	1/20/2021	3 yr.	Procedure	Sheet	Liaw, Chong-Jer	InProgress		No	as Reference		No		
							Gu, Xiaofeng ; Tustin,				Cancel - Need				
24	24.8.1.7	0	11/29/2022	3 yr.	Procedure	LEReC DC Gun HV Conditioning	Gage	Active		Yes	as Reference		No		
							Fliller, Raymond ;				Cancel - Need				
24	24.8.4.5	0	1/19/2018	3 yr.	Procedure	Building 1002F Laser Interlock System	Inacker, Patrick	Inactive	9/5/2023	No	as Reference		No		
											Cancel - Need				
24	24.8.4.7	2	12/9/2021	3 yr.	Procedure	Procedure for Access to 2zl During High Power Laser Alignment	Fliller, Raymond	Active		No	as Reference		No		
						Safe Work Practices for Diagnosing LEReC Faraday Cup Relay					Cancel - Need				
24	24.8.7.1	0	5/16/2023	3 yr.	Procedure	Chassis Problems	Tustin, Gage	Active		Yes	as Reference		No		

500MHz MPS

- FPC 1 Arc Detector: TTL [RF group]
- FPC 2 Arc Detector: TTL [RF group]
- Tuner RTD (Use RG58? cable from buncher that was removed) [Inst. Group]
- RF FPC 1 Window flow switch [Water group]
- RF FPC 2 Window flow switch [Water group]
- Cavity Left RTD (NO CHANGE) [Inst. Group]
- Cavity Right RTD (NO CHANGE [Inst. Group]
- PASS (NO CHANGE)
- RF Circ Arc Detector: TTL (NO CHANGE) [RF group]
- Vacuum Status (NO CHANGE) [Vacuum group]
- Water Status: (NO CHANGE) [Water group]

500MHz Cooling Requirement

Cooling Circuits	Description	Flow rate/ Circuit [GPM]
1	Coupler Port 1	2.1
2	Coupler Port 2	2.1
3	- End disc 1	2.64
4	- End disc 2	2.64
5	Nose Cone 1	1.05
6	Nose Cone 2	1.05
7	Tuner	0.8
8	FPC 1 Inner Conductor	.53
9	FPC 1 outer conductor	.53
10	FPC 2 Inner Conductor	.53
11	FPC 2 outer conductor	.53
12	Cavity half 1 (6 circuits reduced to 2)	5.55
13	Cavity half 2 (6 circuits reduced to 2)	5.55

Report no.: 6189-BP-15755-B Aug. 22, 2023 Date: Page: 27 of 28

research instruments

3.3 Interfaces

The cavity interfaces are summarized in Table 3-2.

Table 3-2 Cavity Interfaces

Category	Name	Definition	Quantity
	RF input T-piece	EIA 6 1/8"	2
Electrical	Overpressure switch	Terminals	1
	PT100	4-Wire	1
	RF Probe	Type N	2
	Limit Switch Tuner	Terminals	2
	Input Coupler Flange	DN160 CF	2
	Tuner Flange	DN63 CF	1
Vacuum	Pickup Flange	DN40 CF	2
	Beam Tube Flange	DN63 CF	2
	Vacuum Pump Flange	DN160 CF	1
	Coupler Inner	SS-8M0-7-4	2 x 2
	Coupler Collar	SS-8M0-7-4	2 x 2
	Coupler Port	SS-16M0-7-8	2 x 2
Water	Tuner Head	SS-8M0-7-4	1 x 2
	Body	SS-16M0-7-8	12
	End Disc	SS-16M0-7-8	2 x 2
	Nose	SS-16M0-7-8	2 x 2
Air	Compressed Air inlet	Diameter 25mm Hose	1

All cooling channels and pipe work will be comprised out of stainless steel and copper only. On one side of the cavity every two channels are connected in series the body and U-turn tubes have 16mm outer diameter and are connected by twelve SS-16M0-6 fittings, that can be replaced easily by SS-16M0-7-8 in case needed.

Figure 3-7 Frequency Tuner

Cooling Circuit	Heat transfer Coefficient /	Flow rate per circuit		
	[W/(m ² K)]	[l/min]	GPM	
Coupler Port (2 circuits)	5000	8	2.1	
Enddisc (2 circuits)	5000	10	2.64	
Nose (2 circuits)	5000	4	1.05	
Plunger (1 circuit)	2000	3	0.8	
Body (6 circuits)	6500	7	1.85	
Total		89		

National Laboratory

result. Out of the calculation comes that less than 10W are lost in the ceramics with 4kW input power. 3 to 5 m³/h are easily enough to provide cooling to the discs. Some flow should be result out of the couplet of the state of th Can you provide this flow? 1.75 - 3 CFM

Best regards Riörn

measured b emperature probe. The inner and outer conductors are water cooled (2 I/min @ P<120kW). The inlet tube is the shorter one that ends in front of the inner conductor cone (refer to Figure 3-5)

Kai did an "over the thumb" estimation of the air flow requirements. Since it was done analytically without a real 3D flow dynamic simulation we applied still some safety factor on the

③ ← Reply ≪ Reply All → Forward 1 ...

Tue 10/24/2023 10:57 AM

BNL/Jlab Compton Polarimeter

Inspection Camera

- Limit switches connected and added to MPS and checked.
- Successfully tested from Specialist Tool in PET
- Camera and 940nm illumination ring light connected
- PS and dimmer installed and final adjustment pending

RHIC/Systems/CeC/SpecialistTools/Instrumentation/SpecialistTools/2a-inst3/

