dRICH LUTs

dRICH simulations are running within ePIC framework

Generation of LUTs is therefore time consuming

Present LUTs are templates

- Nominal aerogel (not yet optimized)
- Nominal dRICH geometry
- No noise (expected negligible at beginning of ePIC and for gas)
- Single particles
- Only 3 eta bins
- Averaged on phi (azimuth)
- Separated radiators
- One file for e/π and one for $\pi/k/p$
- No real PID

LUTs will be refined while the full epIC simulation/analysis chain is commissioned

From ePIC simulations: refractive index sigma values

Delphes: separation at mid-point efficiency & mis-ID probabilities

dRICH Simulations

Optimization study ongoing for aerogel refractive index

Study of "worse case" DCR background impact on resolution

TDR: Basic Performance

With optimization of the dRICH optics inside EPIC

Magnetic field and track resolution accounted for, results averaged over azimuthal angle (ϕ)

TDR Scope: > 3σ separation in the wanted momentum range (i.e. at maximum momentum)

TDR: Hadron Identification

Aerogel

Combined plot

TDR: Electron Separation

Combined plot

Gas

ePIC PID-WG - 19th April 2024

Optional: Angular Separation

+ event display

