SR background simulation updates

Andrii Natochii

natochii@bnl.gov

Reminder

from the previous meeting

- 1. Beam pipe material matters
- 2. Overall, SR background rates are very high ~ THz
- 3. SR masks can significantly reduce the rates
- 4. The beam pipe geometry is not fixed and needs revision

Beam pipe material modification

Beam pipe material impact

By changing the beam pipe material, we reduce SR background rates by an order of magnitude.

Lattice file v6.2 | 18 GeV | 2 IPs | I = 0.227 A

Background observables

This is presumably what we will see in the experiment

There are three classes of MC variables

- **SimHits** the Geant4-like hits in each sub-module (sensitive volume)
- **RawHits** pre-analyzed SimHits with applied sensor calibration thresholds
- RecHits pre-analyzed RawHits with applied channel calibration threshold

SR background mitigation

To reduce SR background rates in the ePIC detector, we implement the following:

- add additional SR masks along the upstream e-beam pipe;
- add an additional SR mask inside the Q0 magnet, avoiding beam envelope restrictions (see backup slides);
- modify the central beam pipe in both Geant4 and eic-shell avoiding discrepancies and SR leakage, where beam pipes connect (see backup slides).

Reduced SR background and Simulation limits

- The implementation of the new countermeasures has led to a remarkable reduction in the SR background, which scaled down the rates by approximately two orders of magnitude.
- Unfortunately, the given simulation statistics do not allow us to look below **1.4 GHz** = 0.227A / (1e4 x 1e5 x 1.6e-19C).
- For the comprehensive SR simulation, we need the final beam pipe design.
- To study the SR rate at the MHz level, we have to increase the number of simulated electrons by 3-4 orders.

Possible solutions

- **1. Geant4:** National Energy Research Scientific Computing Center (NERSC) is the largest computer cluster in the US.
 - Total cores: 311,296 (CPU/2.4 GHz)
 - 1e5 electrons/job = 3 hours
 → 0.227 A / (3e5 jobs x 1e5 electrons x 1.6/e-19) = 50 MHz
- 2. Analytically: Creating SR photons and tracking them in 3D using analytical functions \rightarrow could potentially speed up the simulation.
- 3. Semi-analytically: Creating SR photons using analytical functions and tracking them using Geant4 → could speed up the simulation by a factor of 2-3.

ESR lattice impact on the SR load in the far-backward region

Geant4 modeling for SR photon propagation in the vacuum beam pipe

Lattice file v6.2: Cold (Jan 2024) vs Warm (Mar 2024)

- B2eR: θ
- Q2eR: K1L
- Q1eR: K1L

SR production vertex position: Cold

Production vertices of SR photons that were absorbed by the vacuum beam pipe Number of generated SR photons per event in mag_D2ER

Number of SR photons generated by B2eR per electron

Energy sum of generated SR photons per event in mag_D2ER

Total energy of all generated SR photons in B2eR per electron

13

SR photon position: Cold

XZ distribution of absorbed SR photons on the inner surface of the vacuum beam pipe

May 16, 2024

Andrii Natochii | Background TF

Absorbed SR photon distribution on the Lumi Window (before propagation through the window material)

SR energy deposition in the window: Cold B2eR

Lattice	V6.2	V5.6
# of simulated 18-GeV electrons	10 ⁸	
Simulated beam current [A]	0.227	
E _{dep} [GeV] – deposited energy in the Al block	1729.5	1792.1
E _{dep} rate [GeV/s]	2.45e+13	2.54e+13
Dose rate [MRad/s]	2.3	2.4
Wattage [kW]	3.9	4.1
Temperature rise [°C/min]	1480.0	1533.5

Without cooling, Lumi Window will melt in less than a minute!

Backup slides

Apr2024 ePIC (after PR with pew beam pipe materials)

May 16, 2024

Andrii Natochii | Background TF

W/ SR-mask 5

May 16, 2024

Andrii Natochii | Background TF

XZ

I = 0.227 A -37m < z < 5m E_γ > 30 eV

Lattice file v6.2 | 18 GeV | 2 IPs | I = 0.227 A

1 SR mask in Q01 SR mask in Q0+ beam pipe tip

XZ

I = 0.227 A-37m < z < 5m E_{γ} > 30 eV

Lattice file v6.2 | 18 GeV | 2 IPs | I = 0.227 A

SS + Cu beam pipe

1 SR mask in Q01 SR mask in Q0+ beam pipe tip+ beam pipe tip

