Resolution Study with Υ Production at EIC

Apr 29 2024 Exclusive, Diffractive, & Tagging Meeting Saeahram Yoo, Minjung Kim, Spencer Klein, Daniel Cebra

Introduction

- Our first goal: Invariant mass spectrum of Υ (1S), Υ (2S), and Υ (3S) in the electron channel by EPIC for the resolution study
- This presentation is a brief update on the previous report
 - Vector Mesons:
 - \circ $\Upsilon(1S),$ $\Upsilon(2S)$ and $\Upsilon(3S) \rightarrow e^+e^-$
 - Update on:
 - $^{\rm O}$ New sample with the current detector configuration
 - Fixed energy of Electron and Au beams: Electron (18 GeV) on Au (275 GeV/nucleon) to Electron (10 GeV) on Au (110 GeV/nucleon)

Invariant Mass of Reconstructed Υ (1S), Υ (2S), Υ (3S)

Created Υ(1S), Υ(2S) and Υ(3S) samples separately in the region of 0 < Q² < 0.01 GeV² (Truth seeding)
° eSTARlight (generate seeds) → <u>AfterBurner (beam spreads</u>) → npsim (digitalization) → ElCrecon (reconstruction)
° 1000 events each

Exclusive, Diffractive, & Tagging Meeting

Aug 29 2023

Fit Model: DSCB

• Fit to a Double Sided Crystal Ball (DSCB) function ° Double Sided Crystal Ball (DSCB) function

$$DSCB(m;\mu,\sigma,\alpha_{L},n_{L},\alpha_{H},n_{H}) = \begin{cases} e^{-0.5t^{2}} & \text{if } -\alpha_{L} < t < \alpha_{H} \\ e^{-0.5a_{L}^{2}} \left[\frac{\alpha_{L}}{n_{L}} \left(\frac{n_{L}}{\alpha_{L}} - \alpha_{L} - t\right)\right]^{-n_{L}} & \text{if } t < -\alpha_{L} \\ e^{-0.5a_{H}^{2}} \left[\frac{\alpha_{H}}{n_{H}} \left(\frac{n_{H}}{\alpha_{H}} - \alpha_{H} + t\right)\right]^{-n_{H}} & \text{if } t > \alpha_{H} \end{cases}$$

where t = (m - μ)/ σ

Invariant Mass Fit of Reconstructed Υ (1S), Υ (2S), Υ (3S)

• Fit each peak with DSCB

° Tail parameters (α_L , n_L , α_H , n_H) of Υ (2S) and Υ (3S) mass peaks are fixed with the values taken from Υ (1S) mass fit

Invariant Mass Fit of Reconstructed Υ (1S), Υ (2S), Υ (3S)

- Used the ratio for the yields 1:0.45:0.33 from <u>the STARlight paper</u>
- Fitted with the DSCB(Double-Sided Crystal Ball) function with the constraints on the mean and tail parameter values of Υ (2S) and Υ (3S).

$$m_{YnS} = m_{Y1S} * \frac{PDGmass_{nS}}{PDGmass_{1S}}$$

• Resolution of each peak: $\sigma_{1S} = 66.52 \pm 2.64 \text{ MeV}$ $\sigma_{2S} = 56.42 \pm 6.58 \text{ MeV}$ $\sigma_{2S} = 67.03 \pm 5.36 \text{ MeV}$ \rightarrow need to obtain values using a larger sample size

Summary & Outlook

- Detector resolution study to separate $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$ peaks is in progress using simulation • eSTARlight (generate seeds) \rightarrow npsim (digitalization) \rightarrow EICrecon (reconstruction)
- The resolution of the three peaks was obtained using DSCB fits in the region of 0 < Q² < 0.01 GeV² with the truth seeding
 - \rightarrow Seem to have consistent resolution in each peak within the uncertainties
 - \rightarrow Need fine-tuning of the fits
 - \rightarrow Need to obtain the resolution value using a larger sample size
- Next steps:
 - ^o Add beam spreads using AfterBurner and generate a larger sample
 - Detector resolution study using realistic seeding and in different region of the detector (barrel vs end cap)