Elastic electron-proton scattering in ePIC

Barak Schmookler (UC Riverside)

A. Pierre-Louis (SBU)

D. Higinbotham (JLab)

Anil Panta (JLab)

Elastic electron-proton scattering at the EIC

Elastic e-p scattering: EIC kinematics

$$\cos\theta_e = \frac{yE_p - (1-y)E_e}{yE_p + (1-y)E_e}$$

$$\cos \theta_p = \frac{-yE_e + (1-y)E_p}{yE_e + (1-y)E_p}$$

Elastic e-p scattering: EIC kinematics

$$\cos \theta_e = \frac{yE_p - (1-y)E_e}{yE_p + (1-y)E_e}$$

$$\cos \theta_p = \frac{-yE_e + (1-y)E_p}{yE_e + (1-y)E_p}$$

EIC Q²- ϵ coverage – high Q²

The EIC will be able to measure the elastic e-p cross section in the range **5** (GeV/c)² < Q^2 < 40 (GeV/c)². This would be the highest Q^2 ever measured for e-p elastic scattering, and it would be the first time the elastic cross section is measured at a high-energy collider.

Using these new measurements in global analyses would provide additional constraints on potential ϵ -dependent effects.

Moreover, the over-constrained kinematics of elastic scattering would allow these events to be used for important detector calibration purposes.

Simulation

Particle reconstruction – central detector

 $5 \text{ GeV e}^- \ge 41 \text{ GeV p}$

4/29/2024

Particle reconstruction – central detector

$5~{\rm GeV}~{\rm e^-} \ge 41~{\rm GeV}$ p

Reconstruction is done using ReconstructedChargedParticles collection. We require a |PDG| value > 0, which means there is a geometric (eta-phi) match between the reconstructed track and the generated particle.

Scattered electron reconstructed momentum vs. polar angle

Outgoing proton reconstructed momentum vs. polar angle

Lab frame reconstruction vs. 'colinear' frame reconstruction

Reconstruction in minimally-boosted beam colinear frame. The Lorentz transformation and rotation is done based on this code:

https://github.com/eic/EICrecon/blob/main/src/algorithms/rec o/Boost.h

Reconstructed proton and electron ϕ balance: Colinear frame

Reconstructed proton and electron ϕ balance: Lab frame

Lab frame reconstruction vs. 'colinear' frame reconstruction

Reconstruction in minimally-boosted beam colinear frame. The Lorentz transformation and rotation is done based on this code:

https://github.com/eic/EICrecon/blob/main/src/algorithms/rec o/Boost.h

Reconstructed proton and electron P_T balance: Lab frame

1800

1600

1400

Lab frame reconstruction vs. 'colinear' frame reconstruction

Reconstruction in minimally-boosted beam colinear frame. The Lorentz transformation and rotation is done based on this code:

https://github.com/eic/EICrecon/blob/main/src/algorithms/rec o/Boost.h

4/29/2024

Kinematic reconstruction

- The reconstruction of x and Q² for elastic events is studied using three methods:
 - 1. Scattered electron method: Reconstruction using the measured scattered electron's energy (momentum) and polar angle.
 - 2. Jacquet-Blondel method: Reconstruction using the measured outgoing proton's energy (momentum) and polar angle.
 - 3. Double-Angle method: Reconstruction using scattered electron's and outgoing proton's measured polar angles.

Reconstruction using scattered electron:

$$y_e = 1 - \frac{E'_e}{2E_e} (1 - \cos \theta_e) ,$$

$$Q_e^2 = 4E_e E'_e \cos^2(\theta_e/2) ,$$

$$x_e = \frac{Q_e^2}{sy_e} .$$

Reconstruction of *x* when using only the scattered electron is expected be poor for elastic events (at very low *y*):

$$\frac{\delta x_e}{x_e} = \frac{1}{y_e} \cdot \frac{\delta E'_e}{E'_e} \bigoplus \left[\frac{1 - y_e}{y_e} \cdot \cot \frac{\theta_e}{2} + \tan \frac{\theta_e}{2} \right] \cdot \delta \theta_e$$

 $5 \text{ GeV e}^- \ge 41 \text{ GeV p}$

Reconstruction of Q²

 $5 \text{ GeV e}^- \ge 41 \text{ GeV p}$ Reconstruction of x x = 1pJacquet-Blondel method Double-Angle method Scattered electron method x reconstruction: D.A. method x reconstruction: electron method x reconstruction: J.B. method 10³ 10^{2} 10² XD. × 10 10 0.6 0.6 10 0.4 0.4 0.2 0.2 20 Q² true 35 20 Q² true 10 20 Q² true 35 10 15 25 30 40 10 25 30 35 15 25 30

Low Q² events and QED effects

$$Q_{max,min}^2 = Q^2 \frac{2(1-x_r)(1\pm\sqrt{1+\gamma^2})+\gamma^2}{\gamma^2+4x_r(1-x_r)}$$

 $\gamma^2 = 4M^2 x^2 / Q^2,$

 $x_r = x/x_{true}.$

Scattered elastic electron in Far-Backwards region at low Q².

We have generated events including QED effects using Djangoh v4.6.21. These events are stored in HepMC3 format and have been successfully run through the beam-effect afterburner.

Conclusions

- We have studied reconstruction of high Q² elastic e-p events using the ePIC simulation.
- ➢Our next steps are to look at higher-energy configurations, where the outgoing proton goes into the far-forward region. We also will look at the events generated with QED effects in more detail.
- ➤The generated and burned HepMC files are stored in a local repository. We can upload them to S3 and start working on a physics benchmark.