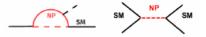


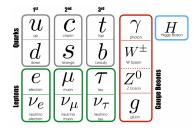
Recent *B*-Physics results from Belle II

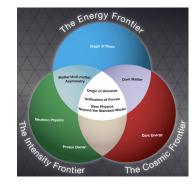
Seema Choudhury Iowa State University, USA

July 11 2024

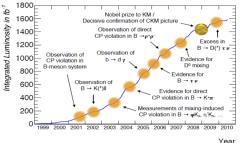
Physics Motivation


- Origin of particles generations and the role of flavor
- CP violation and matter-antimatter asymmetry

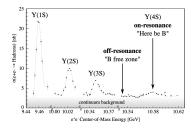



- Where to look for NP at colliders?
- $\bullet~\mbox{Energy}$ Frontier $\rightarrow~\mbox{direct}$ search of new particles

• Intensity Frontier \rightarrow indirect search of new virtual particles and search for NP in high precision measurements by looking at deviation from SM



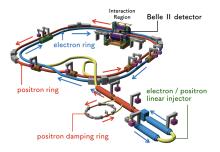
First generation B factories

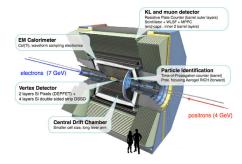

- Belle at KEKB and BaBar at PEP-II
- High luminosities:
 - 711 fb^{-1} at Belle
 - 424 fb⁻¹ at BaBar

rea

- Wide physics program
 - confirmation of KM mechanism, direct CPV in *B* decay
 - 2008 Nobel prize in Physics
- Rich legacy left for next generation experiments

- Asymmetric beam energies
 - boosted CMS to measure *B* decay time by decay length reconstruction
- Collision energy at $\Upsilon(4S)$ resonance

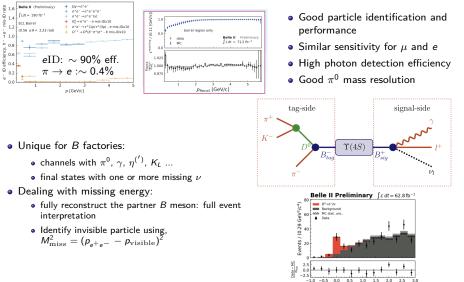

• Coherent production of $B^0 \overline{B^0}$

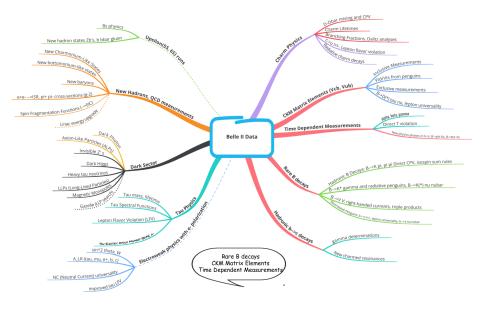


• Full reconstruction of one of the B's, tagging the flavor of the other B etc.

Belle II Experiment - Next generation *B* factory

• Belle II experiment is a leading Flavor Physics experiment at the Intensity Frontier

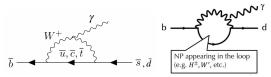



- Asymmetric e⁺ (4 GeV) e⁻ (7 GeV) collider with CM energy at BB threshold, 10.58 GeV
- Design luminosity = $6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
- \bullet World record $L_{\rm peak} = 4.7 \times 10^{34} \ {\rm cm}^{-2} {\rm s}^{-1}$
- Run I (2019 2022): Recorded 424 fb⁻¹ of data: equivalent to BaBar and 1/2 of Belle data sample during Run I
- At $\Upsilon(4S)$ resonance: 362 fb⁻¹
- Recorded 532 fb⁻¹ of data from Run I and Run II (2024a, 2024b)
- Aims to collect 50 ab⁻¹ of data

Advantages of Belle II

• Clean environment: Average 11 tracks per event compared to hundreds of tracks for hadron colliders

M²_{mire} [GeV²/c⁴



Rare *B* decays

$B \to K^* \gamma$ at Belle II

- Involves $b \rightarrow s \gamma$ transition
- \bullet New particles can contribute to internal loop, altering ${\cal B}$ as well as other observables

- SM ${\cal B}$ predictions have large theoretical uncertainties (~ 20%) related to form factors [JHEP 04 (2017) 027]
- Observables;
 - $\bullet~$ Branching fraction, ${\cal B}$
 - CP Asymmetry

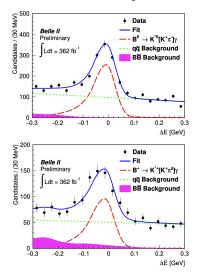
$$\mathcal{A}_{CP} = \frac{\Gamma(\overline{B} \to \overline{K}^* \gamma) - \Gamma(B \to K^* \gamma)}{\Gamma(\overline{B} \to \overline{K}^* \gamma) + \Gamma(B \to K^* \gamma)}$$

$$\Delta \mathcal{A}_{CP} = \mathcal{A}_{CP}(B^0 o K^{*0}\gamma) - \mathcal{A}_{CP}(B^+ o K^{*+}\gamma)$$

Isospin Asymmetry

$$\Delta_{0+} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$$

• \mathcal{A}_{CP} and Δ_{0+} are theoretically clean due to cancellation of form factor contributions in ratio


• SM:
$$A_{CP} = \sim 1\%$$
,
 $\Delta_{0+} = (4.9 \pm 2.6)\%$ [PRD 88 (2013)
094004]

- Belle [PRL 119 (2017) 191802] has observed evidence of isospin violation at 3.1σ using 711 fb⁻¹
- Used Run I data sample of Belle II
- Measured \mathcal{A}_{CP} , $\Delta \mathcal{A}_{CP}$, Δ_{0+} in addition to \mathcal{B}

$B \to K^* \gamma$ at Belle II

[paper in preparation]

$$K^{*0}
ightarrow K^{+}\pi^{-}, K^{0}_{S}\pi^{0}$$

 $K^{*+}
ightarrow K^{+}\pi^{0}, K^{0}_{S}\pi^{+}$

• 2D fit of
$$M_{\rm bc}$$
 $(\sqrt{(E_{\rm beam}/c^2)^2 - (p_B/c)^2})$
and ΔE $(E_B - E_{\rm beam})$ to extract signal

$$\begin{split} \mathcal{B}(B^0 \to K^{*0}\gamma) &= (4.16 \pm 0.10 \pm 0.11) \times 10^{-5} \\ \mathcal{B}(B^+ \to K^{*+}\gamma) &= (4.04 \pm 0.13 \pm 0.13) \times 10^{-5} \\ \mathcal{B}(B \to K^*\gamma) &= (4.12 \pm 0.08 \pm 0.11) \times 10^{-5} \end{split}$$

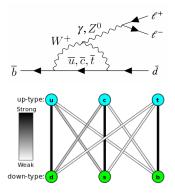
$$\begin{aligned} \mathcal{A}_{CP}(B^0 \to K^{*0}\gamma) &= (-3.2 \pm 2.4 \pm 0.4)\% \\ \mathcal{A}_{CP}(B^+ \to K^{*+}\gamma) &= (-1.0 \pm 3.0 \pm 0.6)\% \\ \mathcal{A}_{CP}(B \to K^*\gamma) &= (-2.3 \pm 1.9 \pm 0.3)\% \end{aligned}$$

$$\Delta \mathcal{A}_{CP} = (2.2 \pm 3.8 \pm 0.7)\%$$

 $\Delta_{0+} = (5.1 \pm 2.0 \pm 1.0 \pm 1.1)\%$

• Results are consistent with WA and SM

SM: $A_{CP} = \sim 1\%$, $\Delta_{0+} = (4.9 \pm 2.6)\%$


• Similar sensitivity to Belle [PRL 119 (2017) 191802] due to improved ΔE resolution and $K_{\rm S}^0$ identification efficiency

$B ightarrow (\eta, \omega, \pi, \rho) \ell^+ \ell^-$ at Belle

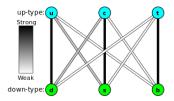
- Involves $b
 ightarrow d\ell^+ \ell^-$ transition
- B for $b \to d\ell^+\ell^-$ is more sensitive to new physics than $b \to s\ell^+\ell^-$ as SM B is suppressed by a factor of $|V_{td}/V_{ts}|^2 \sim 0.04$
- Typical ${\cal B}$ in SM is ${\cal O}(10^{-8})$ or smaller [PRD 86 (2012) 114025]
- LHCb [JHEP 10 (2015) 034, PLB 743 (2015) 46]

$$\begin{split} \mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) &= (1.78 \pm 0.23) \times 10^{-8} \\ \mathcal{B}(B^0 \to \rho^0 \mu^+ \mu^-) &= (1.98 \pm 0.53) \times 10^{-8} \\ \mathcal{B}(B^0 \to \pi^+ \pi^- \mu^+ \mu^-) &= (2.11 \pm 0.52) \times 10^{-8} \end{split}$$

- \bullet Search for e channels in addition to μ channels: tests LFU in $b \to d \ell^+ \ell^-$
- Used 711 fb⁻¹ data sample of Belle

$$egin{aligned} B^{\pm,0} & o (\eta, \omega, \pi^{\pm,0},
ho^{\pm,0})$$
ee $B^{\pm,0} & o (\eta, \omega, \pi^0,
ho^{\pm}) \mu \mu \end{aligned}$

1

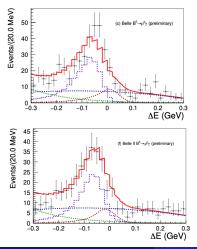

$B \to (\eta, \omega, \pi, \rho) \ell^+ \ell^-$ at Belle

channel	$\mathcal{B}^{\mathrm{UL}}$ (10 ⁻⁸)	• 2D $M_{ m bc}$ and ΔE fit to extract signal yield		
$B^0 o \eta e^+ e^-$	< 10.5	Belle	Belle	
$B^0 o \eta \mu^+ \mu^-$	< 9.4	$\sum_{k=1}^{25} [\text{(b) } B^0 \to \omega \ell^+ \ell^-]$	$ \begin{array}{c} \sum_{\substack{20\\ \text{st} \\ 20\\ 2$	
$B^0 o \eta \ell^+ \ell^-$	< 4.8	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	<u>19</u> 20 -	
$B^{0} ightarrow \omega e^{+}e^{-}$	< 30.7			
$B^0 o \omega \mu^+ \mu^-$	< 24.9			
$B^0 o \omega \ell^+ \ell^-$	< 22.0	₅╫╵╵Т╵║╶╢┽║╢╷ <u>╖╋╁┿┿╫╪</u> ┿╸╢╸	₅╟╵╵╵┽╎╵┊╫╢╴ <u>╫</u> ╋ <u>╋╋╋╋</u>	
$B^{\overline{0}} \rightarrow \pi^{0} e^{+} e^{-}$	< 7.9	5.2 5.22 5.24 5.26 5.28	-0.15 -0.1 -0.05 0 0.05 0.1	
$B^0 o \pi^0 \mu^+ \mu^-$	< 5.9	M _{bc} [GeV/c ²]	∆E [GeV] Belle	
$B^0 \rightarrow \pi^0 \ell^+ \ell^-$	< 3.8	$\begin{array}{c} 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 $		
$B^+ \rightarrow \pi^+ e^+ e^-$	< 5.4	9 25 - 1 1	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	
$B^0 o ho^0 e^+ e^-$	< 45.5			
$B^+ \rightarrow \rho^+ e^+ e^-$	< 46.7		Ă 10 F T+¥ T+F+ → + F+++++ + + + + + + + + + + + + +	
$B^+ o ho^+ \mu^+ \mu^-$	< 38.1		₅╞╵╵╵║╵╴╵╿╟┿╋╿╹╷╿╿╫╸┥┥┪	
$B^+ o ho^+ \ell^+ \ell^-$	< 18.9	0 5.2 5.22 5.24 5.26 5.28	-0.15 -0.1 -0.05 0 0.05 0.1	
		0.2 0.22 0.24 0.20 0.20 0.20 0.20 0.20 0	Δ <i>E</i> [GeV]	

• World's best limits for $B^{\pm,0} \to (\eta, \omega, \pi^{\pm,0}, \rho^{\pm,0})$ ee and $B^{\pm,0} \to (\eta, \omega, \pi^0, \rho^{\pm})\mu\mu$

- World's first limits for $B^0\to\omega\ell^+\ell^-,\,B^+\to\rho^+\ell^+\ell^-,\,{\rm and}\,\,B^0\to\rho^0e^+e^-$
- No LFU $(b o d\mu^+\mu^-/b o de^+e^-)$ violation observed in $b o d\ell^+\ell^-$ transitions

• $b \to d\gamma$ transition have one order of magnitude lower B compared to $b \to s\gamma$ processes and can be affected by NP independently


- $B \to \rho \gamma$ decay has been observed by the Belle [PRL 101 (2008) 200401] and BaBar [PRD 78 (2008) 112001]
- Current WA of $\Delta_{0+} = (30^{+16}_{-13})\%$ [PTEP 2022 (2022) 083C01] lies about 2σ away from the SM expectation of $(5.2 \pm 2.8)\%$ [PRD 88 (2013) 094004]]
- Used 711 fb $^{-1}$ and 362 fb $^{-1}$ data samples from Belle and Belle II
- $\bullet~{\rm Reconstructed}~\rho^0\to\pi^+\pi^-$ and $\rho^+\to\pi^+\pi^0$ for B^0 and B^+
- Experimentally challenging due to the presence of $B\to K^*\gamma$ background
- $M_{K\pi}$: invariant mass of ρ recalculated based on hypothesis that one of the π^+ is a K^+
- $M_{K\pi}$ helps separate $K^*\gamma$ background better compared to $M_{\pi\pi}$

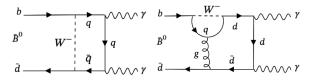
Exclusive $B \rightarrow \rho \gamma$ at Belle & Belle II

• Simultaneous 3D fitting on $M_{\rm bc}$, ΔE , and $M_{K\pi}$ with extended unbinned ML to 6 independent data sets: B^+ , B^- , and $B^0 + \overline{B^0}$ in Belle and Belle II

signal + bkg, signal, continuum bkg,

generic B, ${\rm B} \rightarrow {\rm K}^* \gamma$

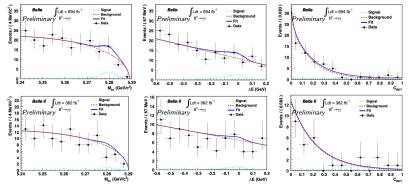
$$\begin{split} \mathcal{B}(B^+ \to \rho^+ \gamma) &= (13.1^{+2.0+1.3}_{-1.9-1.2}) \times 10^{-7} \\ \mathcal{B}(B^0 \to \rho^0 \gamma) &= (7.5 \pm 1.3^{+1.0}_{-0.8}) \times 10^{-7} \\ \mathcal{A}_{CP}(B^+ \to \rho^+ \gamma) &= (-8.2^{+15.3+1.4}_{-15.2-1.3})\% \\ \Delta_{0+}(B \to \rho \gamma) &= (10.9^{+11.2+7.8}_{-11.7-7.3})\% \end{split}$$


- Results are in agreement with SM
- Improved isospin asymmetry A₁ results: consistent with the SM prediction

SM:
$$\Delta_{0+} = (5.2 \pm 2.8)\%$$

• Most precise measurement of observables for $B \to \rho \gamma$ to date

$B^0 ightarrow \gamma \gamma$ at Belle & Belle II


- No direct interaction between *b* and *d* quark
- FCNC process through loop diagram as quark emits and reabsorbs a W^- boson

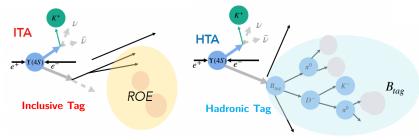
- $B^0 \rightarrow \gamma \gamma$ is suppressed by a factor of $|V_{td}^2|/|V_{ts}^2| \sim 0.04$ compared to $B_s \rightarrow \gamma \gamma$ decay, $\mathcal{B}(B_s \rightarrow \gamma \gamma)$ (SM) $\sim (2-37) \times 10^{-7}$ [JHEP 08 (2002) 054]
- SM $\mathcal{B} = (1.4^{+1.4}_{-0.8}) \times 10^{-8}$ [JHEP 12 (2020) 169], significant long distance contribution
- $\bullet~$ Best UL of $< 3.2 \times 10^{-7}$ by BaBar [PRD 83 (2011) 032006] at 90% CL with 426 fb^{-1} data
- Used 1.1 ab^{-1} of data sample: 694 fb⁻¹ (Belle) + 362 fb⁻¹ (Belle II)

$B^0 ightarrow \gamma \gamma$ at Belle & Belle II

• 3D simultaneous fit between Belle and Belle II using $M_{\rm bc}$, ΔE , and $C'_{\rm BDT}$ (transformed BDT for continuum suppression) to extract signal yield

• $N_{
m sig} = 11.0^{+6.5}_{-5.5}$ having a significance of 2.5σ

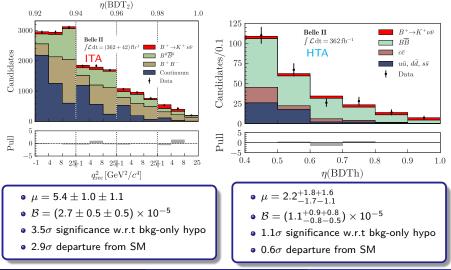
 $\mathcal{B}^{\mathrm{UL}}(B^0 o \gamma \gamma) <$ 6.4 imes 10 $^{-8}$ at 90% CL


- Most stringent UL: 5× better than best limit from BaBar [PRD 83 (2011) 032006]
- Result is not too far from SM expectation

$B^+ ightarrow K^+ u \overline{ u}$ at Belle II

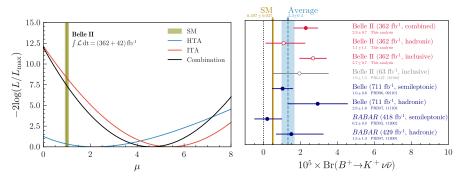
- $\mathcal{B}_{SM}(B^+ \to K^+ \nu \overline{\nu}) = (5.58 \pm 0.37) \times 10^{-6}$ [PRD 107 (2023) 119903]
- Experimentally challenging due to two neutrinos
- Best limit of $< 1.6 \times 10^{-5}$ at 90% CL from BaBar [PRD 87 (2013) 112005]
- Used Run I data sample of Belle II

[PRD 109 (2024) 112006]


- ITA has low purity but high efficiency and HTA has high purity and low efficiency
 - ITA: signal efficiency = 8%; purity = 0.9%
 - HTA: signal efficiency = 0.4%; purity = 3.5%

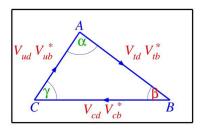
• Parameter of interest: signal strength = $\mu = \frac{\mathcal{B}(B^+ \to K^+ \nu \overline{\nu})}{\mathcal{B}_{SM}(B^+ \to K^+ \nu \overline{\nu})}$

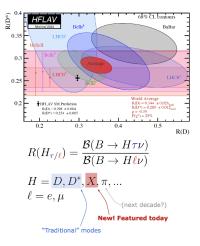
$B^+ ightarrow K^+ u \overline{ u}$ at Belle II


[PRD 109 (2024) 112006]

- Binned fit to extract μ :
 - ITA: Classifier 2 output $[\eta(BDT_2)]$ and q^2 [mass square of neutrino pair]
 - HTA: Classifier output $[\eta(BDTh)]$

$B^+ ightarrow K^+ u \overline{ u}$ at Belle II


[PRD 109 (2024) 112006]



- Excluded common events from ITA sample
- Correlation between common systematic uncertainties are included
 - $\mu = 4.6 \pm 1.0 \pm 0.9$
 - $\mathcal{B} = (2.3 \pm 0.5^{+0.5}_{-0.4}) \times 10^{-5}$
 - 3.5σ significance w.r.t bkg-only hypo
 - 2.7 σ departure from SM

- First evidence of $B^+ \to K^+ \nu \overline{\nu}$ process
- Results are in agreement with all previous measurements

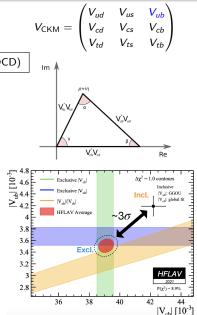
Semileptonic *B* decays: CKM and Lepton Flavor Universality

Untagged $|V_{ub}|$ at Belle II

 |V_{ub}| is important to constrain CKM unitarity triangle and test SM

 $\mathcal{B} \propto |V_{ub}|^2 \times f$, f = form factor (LCSR, LQCD)

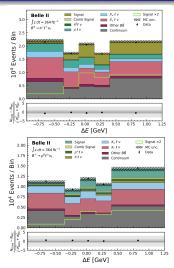
- Long-standing V_{xb}-puzzle between inclusive and exclusive decays
- $|V_{ub}|$ for inclusive and exclusive differ by 2.5σ experimentally

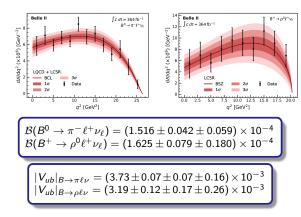

Exclusive : $B \rightarrow \pi \ell \nu$, $B \rightarrow \rho \ell \nu$

Inclusive: $B \rightarrow X_u \ell \nu$

- Used Run I data sample of Belle II
- Untagged analysis

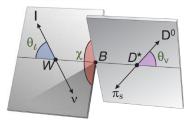
$$\begin{array}{c} B^0 \rightarrow \pi^- \ell^+ \nu_\ell \\ B^+ \rightarrow \rho^0 \ell^+ \nu_\ell \end{array} \end{array}$$


• Sum of measured exclusive \mathcal{B} is $\sim 20\%$ of inclusive $\mathcal{B}(B \to X_u \ell \nu)$


[paper in preparation]

Untagged $|V_{ub}|$ at Belle II

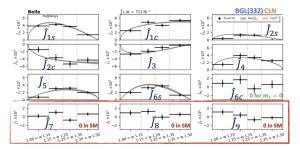
[paper in preparation]


• Simultaneous $B^0 \to \pi^- \ell^+ \nu_\ell$ and $B^+ \to \rho^0 \ell^+ \nu_\ell$ signal yields extraction with binned 3D fit to $M_{\rm bc}$, ΔE , and $q^2 = (\rho_B - \rho_{\pi^-,\rho^0})^2$

- B results are consistent with WA
- $|V_{ub}|$ results are consistent with exclusive WA, HFLAV: $(3.67 \pm 0.09 \pm 0.12) imes 10^{-3}$
- $|V_{ub}|$ results are consistent with previous exclusive measurements [PRD 107 (2023) 052008, PRD 104 (2021) 034032], and theoretical uncertainty dominated

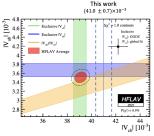
Tagged $|V_{cb}|$ at Belle

- Angular coefficiencts from differential decay rate of exclusive semileptonic $\overline{B}\to D^*\ell\overline{\nu}_\ell$
- $|V_{cb}|$ from angular coefficients of $\overline{B}
 ightarrow D^* \ell \overline{
 u}_\ell$
- Angular coefficients also allow determination of form factors for $B\to D^*$ decay, test sensitive to BSM effects and LFU

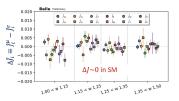


• Differential decay rate can be decomposed in a basis of angular functions with 12 coefficients, $\hat{J_i},$ all dependent on w

• 12 \hat{J}_i coefficients in 4 bins of w


[arXiv:2310.20286]

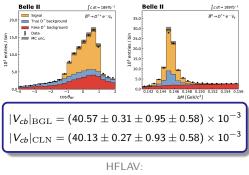
Tagged $|V_{cb}|$ at Belle

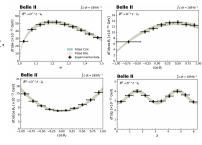


- Coefficients are in good agreement with the fit using BGL [NPB 461 (1996) 493, PRD 56 (1997) 6895] and CLN [NPB 530 (1998) 153] form-factor parametrizations
- Coefficients are consistent with the SM predictions

 \bullet Similar values of $|V_{cb}|$ using CLN and BGL form factors

• Closing the gap with inclusive $|V_{cb}|$ measurement

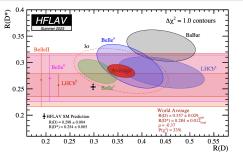



 No significant deviation from SM in LFU

Untagged $|V_{cb}|$ at Belle II

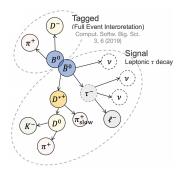
[PRD 108 (2023) 092013]

- Reconstruct $\overline{B}^0 \to D^{*+} \ell^- \overline{\nu}_\ell$, $D^{*+} \to D^0 \pi^+$ and $D^0 \to K^- \pi^+$
- Used 189 fb $^{-1}$ data sample of Belle II
- Extract signal yield with 2D fit to $\cos \theta_{BY}$ (angle between B and $D^*\ell$ system) and $\Delta M = M(D^{*+}) M(D^0)$ in bins of $\cos \theta_\ell$, $\cos \theta_\nu$, χ , and w



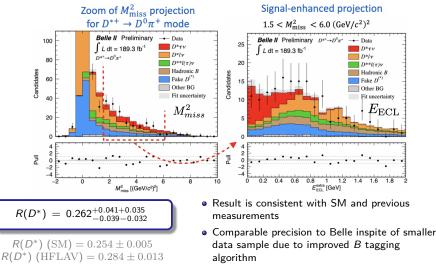
- In agreement with WAs and $|V_{cb}|$ from angular coefficients at Belle
- Result limited by the slow-pion efficiency
- Closing the gap between inclusive and exclusive measurements
- ${\it R}_{e/\mu}=$ 0.998 \pm 0.009 \pm 0.020, consistent with LFU

$$\begin{split} |V_{cb}|_{\rm Excl.} &= (39.10\pm0.50)\times10^{-3} \\ |V_{cb}|_{\rm Incl.} &= (42.19\pm0.78)\times10^{-3} \end{split}$$


$R(D^*)$ Measurement

- Semileptonic decays provide theoretically clean probes to test LFU
- Long-standing tension between LFU-sensitive quantities $R(D) R(D^*)$ and SM predictions

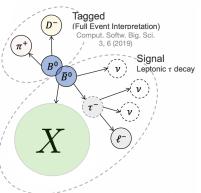
$$R(D^*) = rac{\mathcal{B}(B o D^* au
u_ au)}{\mathcal{B}(B o D^* \ell
u_\ell)}$$

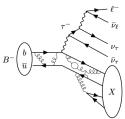

• 3.2σ deviation from SM expectations

- Used 189 fb $^{-1}$ data sample of Belle II
- Tag-side B decays hadronically
- $D^{*+} \rightarrow D^0 \pi^+$ and $D^+ \pi^0$ $D^{*0} \rightarrow D^0 \pi^0$
- $D \rightarrow K\pi, K\pi\pi, K\pi\pi\pi, KK$
- Leptonic τ decays: $\tau^- \to e^- \overline{\nu}_e \nu_\tau$ and $\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau$

$R(D^*)$ Measurement

- Main challenge: Understand significant and poorly known $B o D^{**} \ell
 u$ backgrounds
 - Data-driven validation of background and signal modelling based on studies of sideband regions
- 2D fit in the $M_{
 m miss}^2 = (p_{e^+e^-} p_{B_{
 m tag}} p_{D^*} p_\ell)^2$ and $E_{
 m ECL}$ (residual calorimetric energy)

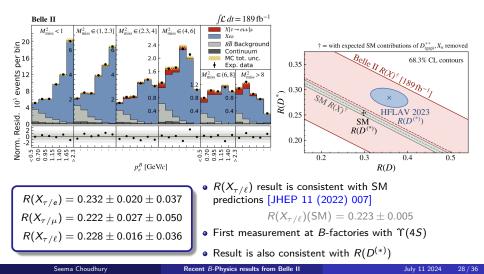



$R(X_{\tau/\ell})$ Measurement

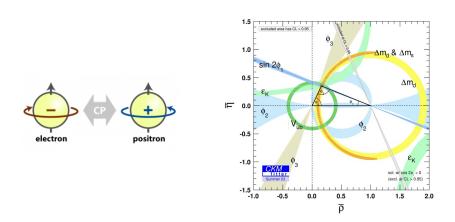
- Semileptonic $B o X au(\ell)
 u$ is inclusive $b o c au(\ell)
 u$ transition
- Test LFU in charged-current weak interaction by measuring tau-to-light-lepton ratio

$$R(X_{\tau/\ell}) = rac{\mathcal{B}(B o X au
u)}{\mathcal{B}(B o X \ell
u)}$$

- Experimentally LFU in exclusive $B \to D^{(*)} \tau(\ell) \nu$ has a tension of 3.2σ
- $\bullet~{\rm Used}~189~{\rm fb}^{-1}$ data sample of Belle II
- Tag-side *B* is fully reconstructed hadronically
- Hadronic system X is reconstructed using remaining tracks and energy deposits in the calorimeter
- Inclusive decay with τ is challenging due to larger background from less constrained X system

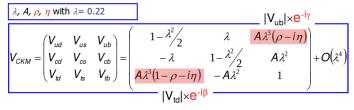


[PRL 132 (2024) 211804]

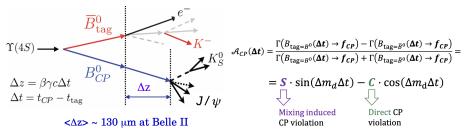

[PRL 132 (2024) 211804]

- 2D fit to p_ℓ^B (in the $B_{\rm sig}$ rest frame) and $M_{\rm miss}^2$ (mass squared for undetected neutrinos) to extract signal yield
- Simultaneous extraction of signal yields for B o X au
 u and $B o X \ell
 u$

 $R(X_{\tau/\ell})$ Measurement

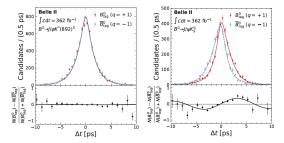


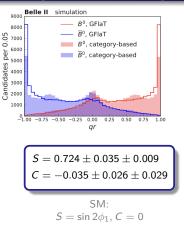
CP Violation and CKM Angles



Time dependent CP violation

- Flagship measurement for B-factories
- CP violation arises from irreducible complex phase in CKM matrix

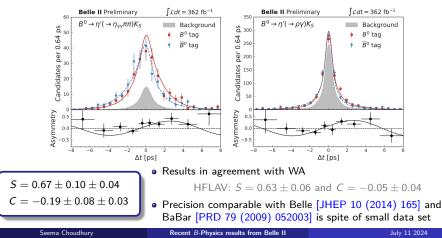

• Measurement relies on ability to identify flavor of tag side ${\cal B}$

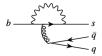


• CKM angle ϕ_1 or β from mixing induced *CP* violation in $B^0 \rightarrow J/\psi K_S^0$ decay

$B^0 ightarrow J/\psi K_S^0$ & CKM angle ϕ_1

- $\bullet~{\rm Used}~{\rm 362}~{\rm fb}^{-1}$ data sample of Belle II
- $\bullet\,$ Graphical NN approach for flavor tagging $\rightarrow\,$ improved tagging efficiency by $\sim\,18\%$
- $\varepsilon_{\rm tagging}^{\rm GFlaT} = (37.40 \pm 0.43 \pm 0.26)\%$ compared to $31.68 \pm 0.45\%$ for category-based
- Extract yields from ΔE and subtract Δt background from sideband (sPlot NIMA:555:356-369,2005)

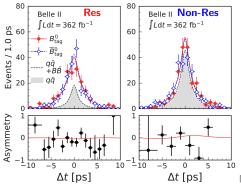



[arXiv:2402.17260]

- Results are consistent with SM
- In agreement with measurements from BaBar [PRD 79 (2009) 072009], Belle [PRL 108 (2012) 171802], and LHCb [PRL 132 (2024) 021801]
- From S, the CKM angle $\phi_1 = (23.2 \pm 1.5 \pm 0.6)^\circ$

Gluonic Penguin: $B^0 \rightarrow \eta' K_s^0$

- Gluonic penguin with $b
 ightarrow sq\overline{q}$ transition, q=u,d, or s
- \bullet Golden mode: Relatively large ${\mathcal B}$ and limited contribution from tree amplitudes
- In SM: $S pprox \sin 2\phi_1$ by 0.01 ± 0.01 and C pprox 0
- Used Run I data sample of Belle II
- Fit to $M_{
 m bc}$, ΔE , $C_{
 m BDT}$, Δt , and $q_{
 m tag}$ (tag-flavor)



32 / 36

[arXiv:2402.03713]

Radiative Penguin: $B^0 \to K_S^0 \pi^0 \gamma$

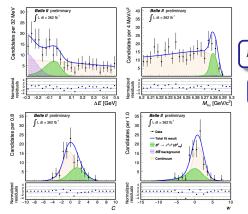
- $\bullet~{\rm Radiative~penguin}$ with $b\to s\gamma$ transition
- Used Run I data sample of Belle II
- Challenging to get B⁰ vertex without prompt tracks

 Improved precision compared to Belle [PRD 74 (2006) 111104] and BaBar [PRD 78 (2008) 071102]

$\begin{array}{c} \underbrace{\text{Res:}} \\ M_{K_{S}^{0}\pi^{0}} \in (0.8, 1.0) \text{ GeV}/c^{2} \text{ i.e., } K^{*0} \rightarrow K_{S}^{0}\pi^{0} \\ \hline \text{Non-Res:} \\ M_{K_{S}^{0}\pi^{0}} \in (0.6, 0.8) \cup (1.0, 1.8) \text{ GeV}/c^{2} \end{array}$

[paper in preparation]

• $M_{
m bc}$ and ΔE followed by Δt fit to extract signal yield


$$S = 0.00^{+0.27}_{-0.26} \pm 0.03$$
$$C = 0.10 \pm 0.13 \pm 0.03$$
$$S = 0.04^{+0.45}_{-0.44} \pm 0.10$$
$$C = -0.06 \pm 0.25 \pm 0.08$$

HFLAV: Res: $S = -0.16 \pm 0.22$, $C = -0.07 \pm 0.12$ NRes: $S = -0.15 \pm 0.20$, $C = -0.07 \pm 0.12$

- Results in agreement with WA and SM
- Results for S are most precise due to better K⁰_S identification

$B^0 ightarrow \pi^0 \pi^0$ at Belle II

- Tree-level $b \rightarrow u$ processes allow extraction of ϕ_2 or α (least known CKM angle)
- Theoretical \mathcal{B} [PLB 794 (2008) 154, PRD 90 (2014) 014029] is 5× smaller than experimental results as amplitude calculation is challenging involving low-energy, non-perturbative gluon exchanges
- $\bullet\,$ Experimentally challenging: no tracks, γ trajectory and energy less precise than tracks
- Used Run I data sample of Belle II

 Fit to M_{bc}, ΔE, C, and w (wrong tag probability)

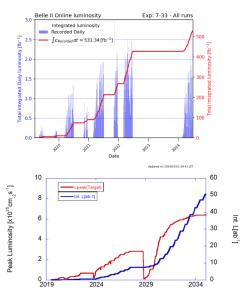
$${\cal B}(B^0 o \pi^0 \pi^0) = (1.26 \pm 0.20 \pm 0.12) imes 10^{-6}$$

$$\mathcal{A}_{\rm CP}(B^0\to\pi^0\pi^0)=0.06\pm0.30\pm0.05$$

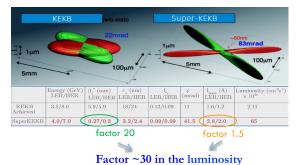
- Results in agreement with WA PDG: $\mathcal{A}_{\rm CP}(B^0 \to \pi^0 \pi^0) = 0.33 \pm 0.22$
- Results have superior or comparable precision with Belle [PRD 96 (2017) 032007] and BaBar [PRD 87 (2013) 052009] in spite of small data set

Projections for Belle II

$\bullet\,$ Plans to collect 50 ab^{-1} by 2035

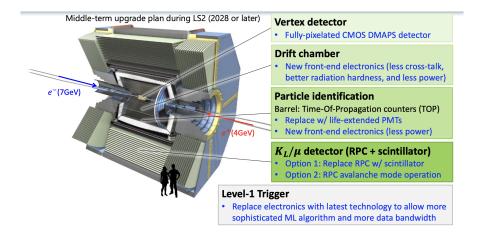

Observables	Expected the. accu-	Expected	Facility (2025)
	racy	exp. uncertainty	
UT angles & sides			
ϕ_1 [°]	***	0.4	Belle II
ϕ_2 [°]	**	1.0	Belle II
φ ₃ [°]	***	1.0	LHCb/Belle II
$ V_{cb} $ incl.	***	1%	Belle II
$ V_{cb} $ excl.	***	1.5%	Belle II
$ V_{ub} $ incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CP Violation			
$S(B \rightarrow \phi K^0)$	***	0.02	Belle II
$S(B o \phi K^0)$ $S(B o \eta' K^0)$	***	0.01	Belle II
$\mathcal{A}(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II
$\mathcal{A}(B \to K^+ \pi^-)$ [10 ⁻²]	***	0.20	LHCb/Belle II
(Semi-)leptonic			
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**	3%	Belle II
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	**	7%	Belle II
$R(B \rightarrow D\tau\nu)$	***	3%	Belle II
$R(B \rightarrow D^* \tau \nu)$	***	2%	Belle II/LIICb
Radiative & EW Penguins			
$\mathcal{B}(B \rightarrow X_s \gamma)$	**	4%	Belle II
$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	***	0.005	Belle II
$S(B \to K_S^0 \pi^0 \gamma)$	***	0.03	Belle II
$S(B \to \rho \gamma)$	**	0.07	Belle II
$\mathcal{B}(B_s \to \gamma \gamma) [10^{-6}]$	**	0.3	Belle II
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%	Belle II
$R(B \to K^*\ell\ell)$	***	0.03	Belle II/LHCb

• High luminosity Belle II is perfect to search for Physics beyond the SM


Conclusions

- Exploited full data of Belle or/and Run 1 data of Belle II
- Belle and Belle II have provided many world's leading measurements, best upper limits, and evidence
- Run II data taking of Belle II has started from early 2024: collecting quality physics data
- Waiting to enter 10³⁵ luminosity era
- Many new results are on their way

A long way to go ... Stay tuned ...



Backup slides

- Design peak luminosity of $6.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (30 times that of KEKB) to be achieved by;
 - reducing beam size by 20 times
 - increasing beam current by 1.5 times

Possible Belle II detector upgrade in LS2

Source	$K^{*0}[K^+\pi^-]\gamma$	$K^{*0}[K_{S}^{0}\pi^{0}]\gamma$	$K^{*+}[K^+\pi^0]\gamma$	$K^{*+}[K_{S}^{0}\pi^{+}]\gamma$
B counting	1.5	1.5	1.5	1.5
f^{\pm}/f^{00}	1.6	1.6	1.6	1.6
γ selection	0.9	0.9	0.9	0.9
π^0 veto	0.7	0.7	0.7	0.7
η veto	0.2	0.2	0.2	0.2
Tracking efficiency	0.5	0.5	0.2	0.7
π^+ selection	0.2	-	-	0.2
K^+ selection	0.4	-	0.4	-
$K_{\rm S}^0$ reconstruction	-	1.4	-	1.4
π^0 reconstruction	-	3.9	3.9	-
χ^2 requirement	0.2	1.0	0.2	1.0
CSBDT requirement	0.3	0.4	0.4	0.3
Best candidate selection	0.1	1.0	0.6	0.2
Fit bias	0.1	0.9	0.5	0.2
Signal PDF model	0.1	0.4	0.3	0.2
KDE PDF model	0.1	0.8	0.6	0.2
Simulation sample size	0.2	0.8	0.4	0.5
Self-crossfeed fraction	_	1.0	1.0	-
Total	2.6	5.4	4.9	3.2

Table 2 Systematic uncertainties (%) for 4 cm measurements

$K^{*0}[K^+\pi^-]\gamma$	$K^{*+}[K^{+}\pi^{0}]\gamma$	$K^{*+}[K^{0}_{S}\pi^{+}]\gamma$
0.1	0.2	0.2
0.1	0.1	0.1
0.1	0.4	0.2
0.1	0.5	0.2
_	0.6	_
-	-	0.6
0.3	-	-
0.4	0.9	0.7
	0.1 0.1 0.1 - - 0.3	

- Dominate systematics from number of $B\overline{B}$ events and f^{\pm} or f^{00}
- $A_{\rm CP}$ measurement dominate uncertainty is coming from interaction of charged hadrons with detector material which give rise to asymmetries in track reconstruction efficiency

$b ightarrow d\ell \ell$

_

- Used a classifier to suppress backgrounds from continuum ($e^+e^- o q\overline{q}, q \in u, d, s, c$) and generic B ($B\overline{B}$)
- Peaking backgrounds are either vetoed or included in the fit of signal yield extraction

channel	background source
$B^0 o \eta \mu \mu$	$B^0 o \eta K \pi$
$B^0 o \pi^0 \mu \mu$	$B^0 o \pi^0 K \pi$ & $B^0 o \pi^0 K K$
$B^+ o \pi^+ ee$	$B^+ o K^+$ ee
$B^0 o ho^0$ ee	$J/\psi ightarrow$ e & $K^* ightarrow$ $K \leftrightarrow$ e
$B^+ o ho^+ \mu \mu$	$J/\psi ightarrow \mu$ & $K^* ightarrow K \leftrightarrow \mu$, $ ho^+ \overline{D^0} (K^+ \pi^-)$

source	ηee	$\eta\mu\mu$	ωee	$\omega \mu \mu$	$\pi^0 ee$	$\pi^0 \mu \mu$	$\pi^+ ee$	$\rho^0 ee$	$ ho^0 \mu \mu$	$\rho^+ ee$	$\rho^+\mu\mu$
μ	-	0.6	-	0.6	-	0.6	-	-	0.6	-	0.6
е	0.8	-	0.8	-	0.8	-	0.8	0.8	-	0.8	-
π^+	1.0	1.0	1.0	1.0	-	-	0.5	1.0	1.0	0.5	0.5
π^0	2.3	2.3	2.3	2.3	2.3	2.3	-	-	-	2.3	2.3
γ	4.0	4.0	-	-	-	-	-	-	-	-	-
FastBDT	7.1	6.6	7.1	6.6	7.1	6.6	1.4	1.4	0.8	7.1	6.6
MC statistics	0.48	0.37	0.73	0.53	0.34	0.24	0.24	0.53	0.34	0.80	0.54
decay model	0.57	0.45	0.75	0.69	0.49	0.76	0.40	0.66	0.51	0.81	0.52
mass window	1.05	1.05	1.21	1.21	-	-	-	3.03	3.03	3.03	3.03
BCS	0.03	0.11	0.15	0.43	0.21	0.23	0.11	0.02	1.09	0.6	0.5
Tracking	0.7 - 1.4	0.7 - 1.4	1.4	1.4	0.7	0.7	1.05	1.4	1.4	1.05	1.05
PDF shape	0.04	0.04	0.43	0.07	0.10	0.09	0.50	0.20	0.06	0.34	0.32
$f^{+-/00}$	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45
$N_{B\overline{B}}$	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Total	9.35	8.95	8.37	7.91	8.07	7.64	3.56	4.80	4.76	8.75	8.29

TABLE XVII: Systematic uncertainties for $b \to d\ell\ell$ decay channels. The uncertainties are shown in %.

$b ightarrow d\ell\ell$ results

-

channel	$\mathcal{B}^{\mathrm{UL}}(10^{-8})$	$\mathcal{B}~(10^{-8})$
$B^0 o \eta e^+ e^-$	< 10.5	$0.0^{+4.9}_{-3.4}\pm 0.1$
$B^0 o \eta \mu^+ \mu^-$	< 9.4	$1.9^{+3.4}_{-2.5}\pm0.2$
$B^0 o \eta \ell^+ \ell^-$	< 4.8	$1.3^{+2.8}_{-2.2}\pm 0.1$
$B^0 ightarrow \omega e^+ e^-$	< 30.7	$-2.1^{+26.5}_{-20.8}\pm0.2$
$B^0 ightarrow \omega \mu^+ \mu^-$	< 24.9	$7.7^{+10.8}_{-7.5}\pm0.6$
$B^0 \to \omega \ell^+ \ell^-$	< 22.0	$6.4^{+10.7}_{-7.8}\pm0.5$
		1.0
$B^0 ightarrow \pi^0 e^+ e^-$	< 7.9	$-5.8^{+3.6}_{-2.8}\pm0.5$
$B^0 o \pi^0 \mu^+ \mu^-$	< 5.9	$-0.4^{+3.5}_{-2.6}\pm0.1$
$B^0 ightarrow \pi^0 \ell^+ \ell^-$	< 3.8	$-2.3^{+2.0}_{-1.5}\pm0.2$
		-1.5
$B^+ ightarrow \pi^+ e^+ e^-$	< 5.4	$0.1^{+2.7}_{-1.8}\pm 0.1$
		-1.0
$B^0 o ho^0 e^+ e^-$	< 45.5	$23.6^{+14.6}_{-11.2}\pm1.1$
,		-11.2
$B^+ \to \rho^+ {\rm e}^+ {\rm e}^-$	< 46.7	$-38.2^{+24.5}_{-17.2}\pm3.4$
$B^+ ightarrow ho^+ \mu^+ \mu^-$	< 38.1	$13.0^{+17.5}_{-13.3} \pm 1.1$
$B^+ ightarrow ho^+ \ell^+ \ell^-$	< 18.9	$2.5^{+14.6}_{-11.8} \pm 0.2$
		11.0

Seema Choudhury

Source	$\mathcal{B}_{\rho^+\gamma} \times 10^8$	$\mathcal{B}_{\rho^0\gamma} \times 10^8$	A_{I}	A_{CP}
Particle detection	4.1	1.3	1.4%	0.5%
Selection criteria	9.0	3.4	4.0%	0.5%
Fixed fit parameters	1.1	2.7	1.8%	0.2%
Signal shape	4.7	3.0	3.1%	0.5%
Histogram PDFs	1.0	0.6	0.5%	0.1%
Peaking $K^*\gamma$ bkg	3.4	5.4	3.1%	0.1%
Other peaking $B\overline{B}$ bkgs	2.2	0.8	0.9%	0.2%
Peaking $B\overline{B} A_{CP}$	0.1	< 0.1	0.1%	1.0%
Number of $B\overline{B}$'s	1.7	1.4	0.3%	0.1%
$\tau_{B^{\pm}}/\tau_{B^{0}}$	0.1	< 0.1	0.2%	< 0.1%
f_{+-}/f_{00}	4.0	3.6	3.8%	< 0.1%
Total	12.5	8.6	7.5%	1.4%

$B^0 \rightarrow \gamma \gamma$ at Belle & Belle II

- Signal reconstruction by two back-to-back highly energetic photons, with $E_{\gamma}^* \in [1.4 - 3.4] \text{ GeV}$
- To reject background from Bhabha scattering or $e^+e^- \rightarrow \gamma \gamma$, timing requirement is applied
- Classifier is used to distinguish photon from K_I^0 showers

Belle

+0.06

-0.48

• Used classifiers to reject background from continuum, $\pi^0 \to \gamma\gamma$ and $\eta \to \gamma\gamma$

Belle II (events) (events)

> +0.04 ± 0.30

-0.32

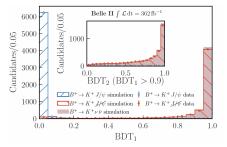
Source	Belle	Belle II
	(%)	(%)
Photon detection efficiency	4.0	2.7
MC statistics	0.4	0.3
Number of $B\bar{B}$ pairs	1.3	1.5
f^{00}	2.5	2.5
$C_{\rm BDT}$ requirement	0.4	0.9
π^0/η veto	0.4	0.6
Timing requirement efficiency	2.8	-
Total (sum in quadrature)	5.7	4.1

TABLE II. Summary of multiplicative systematic uncertainties.

 Photon detection systematic is dominate, obtained using recoil technique in radiative Bhabha events $e^+e^- \rightarrow e^+e^-\gamma$ in Belle, and $e^+e^- \rightarrow \mu^+\mu^-\gamma$ in Belle II

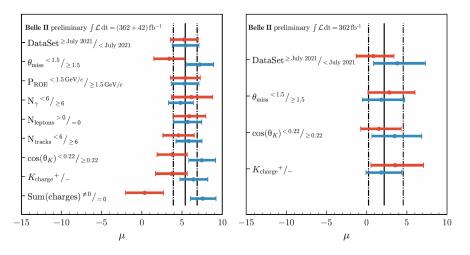
Fit bias +0.14+0.10+0.56+0.28PDF parameterization -0.48-0.32

TABLE I. Summary of additive systematic uncertainties.


Source

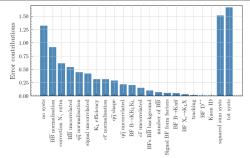
Shape modeling

Total (sum in quadrature)


$B^+ \to K^+ \nu \overline{\nu}$ ITA result validation

- Trained two consecutive BDTs and signal efficiency was checked with $B^+ \rightarrow J/\psi K^+$ decays:
 - Remove J/ψ and correct K^+ kinematics to match $K^+ \nu \overline{\nu}$

- Closure test with measurement of ${\cal B}(B^+ o \pi^+ K^0_S) = (2.5\pm 0.5) imes 10^{-5}$
 - $\bullet\,$ Result is compatible with PDG value of (2.38 $\pm\,0.08) \times 10^{-5}$
- Controlled background using
 - Off-resonance data for continuum background
 - Background from charmless hadronic *B* decays with K_L^0 or neutrons *i.e.*, $B^+ \to K^+ K^0 \overline{K^0}$, $B^+ \to K^+ n \overline{n}$, and $B \to K^* \nu \overline{\nu}$, are considered.
 - $B^+ \to K^+ K^0 \overline{K^0}$ bkg is validated by reconstructing $B^+ \to K^+ K^0_S K^0_S$ and $B^0 \to K^0_S K^+ K^-$ decays
 - $B \to D(\to K^+ X) \ell^- \nu_\ell$ background is studied by combining K^+ with other charged tracks in the event
 - Used pion-enhanced sideband for misidentification study


$B^+ \to K^+ \nu \overline{\nu}$ ITA result validation

• A tension at 2.4σ is observed for the total charge split sample in the ITA. Several studies are conducted to investigate this tension, but they did not reveal any significant systematic effects.

$B ightarrow K u \overline{ u}$ at Belle II

Source	Correction	Uncertainty type	Uncertainty size	Impact on μ
Normalization of continuum and $B\bar{B}$ background	I —	Global, 7 NP	50%	0.87
Leading B -decays branching fractions	—	Shape, 5 NP	O(1%)	0.22
Branching fraction for $B^+ \rightarrow K^+ K^0_L K^0_L$	q^2 dependent $O(100\%)$	Shape, 1 NP	20%	0.48
p-wave component for $B^+ \rightarrow K^+ K^0_S K^0_L$	q^2 dependent $O(100\%)$	Shape, 1 NP	30%	0.02
Branching fraction for $B \rightarrow D^{(**)}$	_	Shape, 1 NP	50%	0.41
Branching fraction for $B^+ \rightarrow n\bar{n}K^+$	q^2 dependent $O(100\%)$	Shape, 1 NP	100%	0.20
Branching fraction for $D \rightarrow K_L X$	+30%	Shape, 1 NP	10%	0.14
Continuum background modeling, BDT_c	Multivariate $O(10\%)$	Shape, 1 NP	100% of correction	0.01
Integrated luminosity		Global, 1 NP	1%	< 0.01
Number of $B\overline{B}$		Global, 1 NP	1.5%	0.02
Off-resonance sample normalization	_	Global, 1 NP	5%	< 0.01
Track finding efficiency	_	Shape, 1 NP	0.3%	0.20
Signal kaon PID	p, θ dependent $O(10 - 100\%)$	Shape, 7 NP	O(1%)	0.07
Photon energy scale		Shape, 1 NP	0.5%	0.07
Hadronic energy scale	-10%	Shape, 1 NP	10%	0.35
K_L^0 efficiency in ECL	-17%	Shape, 1 NP	8%	0.21
Signal SM form factors	q^2 dependent $O(1\%)$	Shape, 3 NP	O(1%)	0.02
Global signal efficiency		Global, 1 NP	3%	0.03
MC statistics		Shape, 156 NP	O(1%)	0.52

$B^0 \to \pi^- \ell^+ \nu_\ell$ and $B^+ \to \rho^0 \ell^+ \nu_\ell$ at Belle II

• Background from $B \to X_c \ell \nu$ is suppressed by applying $p_\ell^* > 1.0 \text{ or } > 1.4 \text{ GeV}/c^2$ for $B^0 \to \pi^- \ell^+ \nu_\ell$ and $B^+ \to \rho^0 \ell^+ \nu_\ell$

				B^0 -	$\rightarrow \pi^{-}\ell$	$^{+}\nu_{\ell}$							
Source	q1	q^2	q^3	q_4	q_5	q_6	q7	q8	q9	q10	q11	q12	q13
Detector effects	2.0	0.9	1.1	1.0	1.0	1.1	1.1	1.0	0.9	1.2	2.3	4.1	5.8
Beam energy	0.6	0.8	0.7	0.8	0.7	0.6	0.6	0.6	0.5	0.5	0.5	0.6	0.7
Simulated sample size	4.7	3.8	3.3	3.2	3.2	2.9	3.8	3.7	4.0	4.5	5.9	8.0	13.6
BDT efficiency	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Physics constraints	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9
Signal model	0.1	0.1	0.2	0.1	0.0	0.2	0.2	0.4	0.3	0.8	0.9	0.2	4.9
ρ lineshape	0.1	0.1	0.3	0.3	0.2	0.1	0.3	0.1	0.3	0.1	0.2	0.2	0.6
Nonres. $B \rightarrow \pi \pi \ell \nu_{\ell}$	0.5	0.6	0.4	0.4	0.5	1.0	1.2	1.0	0.8	1.8	1.2	2.3	14.3
DFN parameters	0.8	0.4	1.5	1.6	1.4	1.7	1.2	0.1	0.7	1.2	2.9	3.5	3.7
$B \rightarrow X_u \ell \nu_\ell \mod$	0.2	0.4	0.3	0.4	0.2	0.9	1.1	1.2	1.0	1.3	1.6	0.7	8.7
$B \rightarrow X_c \ell \nu_\ell \mod$	1.4	2.0	1.7	1.3	1.3	1.4	1.8	1.6	1.3	1.4	1.1	0.5	1.7
Continuum	15.1	11.3	7.6	7.1	5.8	5.7	8.1	8.3	9.6	10.4	14.5	23.8	34.4
Total systematic	16.4	12.6	9.3	8.7	7.7	7.7	10.0	9.9	11.1	12.2	16.6	26.0	41.6
Statistical	11.0	8.8	7.9	7.0	7.5	6.4	7.9	7.7	9.1	10.7	9.6	14.6	22.6
Total	19.7	15.4	12.2	11.2	10.7	10.0	12.7	12.6	14.4	16.3	19.1	29.8	47.3

		I	$3^+ \rightarrow$	$\rho^0 \ell^+ \nu$	'e					
Source	q1	q^2	q_3	q4	q_5	q_6	q7	q8	q9	q10
Detector effects	2.8	2.0	1.6	1.1	1.7	1.9	2.4	1.4	1.4	1.6
Beam energy	2.1	1.9	1.9	1.5	1.3	1.1	1.0	0.9	0.8	0.5
Simulated sample size	14.1	7.8	7.4	6.3	6.3	5.2	6.4	5.6	6.2	-7.3
BDT efficiency	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
Physics constraints	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
Signal model	0.7	0.2	0.2	0.2	0.3	0.4	0.5	0.3	1.8	2.4
ρ lineshape	1.7	1.6	2.0	1.0	1.9	1.8	1.4	0.9	1.6	1.7
Nonres. $B \rightarrow \pi \pi \ell \nu_{\ell}$	5.6	6.3	6.7	8.6	9.3	10.7	10.1	7.0	7.8	11.8
DFN parameters	3.6	5.5	4.1	3.5	1.1	1.2	2.7	1.7	1.9	2.3
$B \rightarrow X_u \ell \nu_\ell \mod$	1.7	3.0	3.8	5.0	5.8	6.1	6.3	1.9	7.2	12.4
$B \rightarrow X_c \ell \nu_\ell \mod$	1.8	1.9	1.7	1.1	1.4	1.7	0.9	0.9	1.9	2.6
Continuum	31.5	24.3	17.0	19.6	13.2	14.8	16.0	16.6	15.2	18.7
Total systematic	35.6	27.5	21.0	23.5	18.8	20.5	21.6	19.4	20.2	27.0
Statistical	30.0	17.5	20.8	14.4	12.4	13.6	14.1	10.4	12.2	11.8
Total	46.6	32.6	29.6	27.6	22.6	24.6	25.8	22.0	23.6	29.5

• Continuum reweighting is dominate systematic and limited by off-resonance sample size (42 fb^{-1})

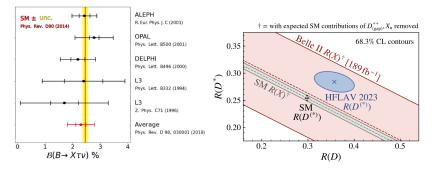
Seema Choudhury

TABLE VI. Fractional contributions to the uncertainties of the CLN form factors from a fit to the $\bar{B}^0 \rightarrow D^{*+} \ell^- \bar{\nu}_{\ell'}$ decay. The uncertainties originating from tracking efficiency, the number of B^0 mesons, the B^0 lifetime, and the charm branching fractions only affect the overall normalization but do not contribute to the parameters related to the shape.

	$ ho^2$	$R_1(1)$	$R_{2}(1)$	$ V_{cb} $
Statistical	3.0	4.1	2.8	0.7
Background subtraction	1.4	2.2	1.2	0.3
Size of simulated samples	1.2	1.7	1.1	0.3
Lepton ID efficiency	0.2	1.6	0.1	0.3
Slow pion efficiency	1.0	0.9	0.8	1.5
Tracking of K, π , ℓ				0.4
N _{BB}				0.8
$f_{+0}^{}$				1.3
$\mathcal{B}(D^{*+} o D^0 \pi^+)$				0.4
$\mathcal{B}(D^0 \to K^- \pi^+)$				0.4
$B^{\hat{0}}$ lifetime				0.1
Signal modeling	2.6	2.6	2.0	0.5
Total	4.5	5.9	3.9	2.4

 \bullet Dominated systematic uncertainty from slow-pion efficiency determined using $B^0 \to D^{*-} \pi^+$ decay

$R(D^*)$ Systematics


- BGL (Boyd-Grinstein-Lebed) utilize dispersive bounds and expand the helicity-basis form factors with a conformal parameter
- CLN (Caprini-Lellouch-Neubert) uses dispersive bounds and quark-model input to reduce the number of parameters required to describe the form factors

Source	Uncertainty
PDF shapes	+9.1% -8.3%
Simulation sample size	+7.5% -7.5%
$\overline{B} \to D^{**} \ell^- \overline{\nu}_\ell$ branching fractions	$^{+4.8\%}_{-3.5\%}$
Fixed backgrounds	$^{+2.7\%}_{-2.3\%}$
Hadronic B decay branching fractions	$^{+2.1\%}_{-2.1\%}$
Reconstruction efficiency	+2.0% -2.0%
Kernel density estimation	$^{+2.0\%}_{-0.8\%}$
Form factors	$^{+0.5\%}_{-0.1\%}$
Peaking background in ΔM_{D^*}	$^{+0.4\%}_{-0.4\%}$
$\tau^- \to \ell^- \nu_\tau \bar{\nu}_\ell$ branching fractions	$^{+0.2\%}_{-0.2\%}$
$R(D^*)$ fit method	$^{+0.1\%}_{-0.1\%}$
Total systematic uncertainty	$^{+13.5\%}_{-12.3\%}$

Table VIII. Summary of systematic uncertainties on $R(D^*)$.

• Dominate systematic:

- Main backgrounds from hadrons misidentiied as leptons and leptons originating from charmed hadrons
 - Suppressed μ fakes from π or K by rejecting $\omega \to \pi^+\pi^-\pi^0$, $K^{*0} \to \pi^-K^+$, $D^0 \to K^-\pi^-\pi^+\pi^+$, $D^+ \to \pi^+\pi^+\pi^- + [\pi^0 \text{ or } \pi^+\pi^-]$, and $D^+ \to K^-\pi^+\pi^+(\pi^0)$
 - $B \to X_c \to \ell$ background modelling: reweight $B \to X\tau(\ell)\nu$ events by taking exp-to-sim ratio in M_X bin using high p_ℓ^B sample

Source	Uncertainty [%]			
Source	e	μ	l	
Experimental sample size	8.8	12.0	7.1	
Simulation sample size	6.7	10.6	5.7	
Tracking efficiency	2.9	3.3	3.0	
Lepton identification	2.8	5.2	2.4	
$X_c \ell \nu$ reweighting	7.3	6.8	7.1	
$B\overline{B}$ background reweighting	5.8	11.5	5.7	
$X\ell\nu$ branching fractions	7.0	10.0	7.7	
$X\tau\nu$ branching fractions	1.0	1.0	1.0	
$X_c \tau(\ell) \nu$ form factors	7.4	8.9	7.8	
Total	18.1	25.6	17.3	

- Dominated systematic uncertainties are experimental and simulated sample sizes as normalization
- Control sample reweighting procedure: $B\overline{B}$ background shapes uncertainties are associated with simulation reweighting

$B^0 \rightarrow J/\psi K_S^0$ Systematics

Source	ε_{tag} [%]	S	C
Detector alignment	0.08	0.005	0.003
Interaction region	0.16	0.002	0.002
Beam energy	0.03	< 0.001	0.001
ΔE -fit background model	0.11	0.001	0.001
ΔE -fit signal model	0.08	0.003	0.006
sWeight background subtraction	0.24	0.001	0.001
Fixed resolution-function parameters	0.07	0.004	0.004
τ and Δm_d	0.06	0.001	< 0.001
$\sigma_{\Delta t}$ binning	0.04	< 0.001	< 0.001
Δt -fit bias	0.09	0.002	0.005
CP violation in B_{tag} decay		< 0.001	0.027
$B^0 \to D^{(*)-} \pi^+$ sample size		0.004	0.007
Total systematic uncertainty	0.36	0.009	0.029
Statistical uncertainty	0.43	0.035	0.026

Table I. Systematic and statistical uncertainties on ε_{tag} for $B^0 \to D^{(*)-}\pi^+$ and, S and C for $B^0 \to J/\psi K_{\text{S}}^0$.

۵

Table II: Summary	of systematic	uncertainties i	for $C_{n'K_{\alpha}^{0}}$ and
$S_{\eta' K_{s}^{0}}$.			

Source	$C_{\eta'K_S^0}$	$S_{\eta' K_S^0}$
Signal and continuum yields	< 0.001	0.002
SxF and $B\overline{B}$ yields	< 0.001	0.006
$C_{\rm BDT}$ mismodeling	0.004	0.010
Signal and background modeling	0.020	0.014
Observable correlations	0.008	0.001
Δt resolution fixed parameters	0.005	0.009
Δt resolution model	0.004	0.019
Flavor tagging	0.007	0.004
τ_{R^0} and Δm_d	< 0.001	0.002
Fit bias	0.003	0.002
Tracker misalignment	0.004	0.006
Momentum scale	0.001	0.001
Beam spot	0.002	0.002
<i>B</i> -meson motion in the $\Upsilon(4S)$ frame	< 0.001	0.017
Tag-side interference	0.005	0.011
$B\overline{B}$ background asymmetry	0.008	0.006
Candidate selection	0.007	0.009
Total	0.027	0.037

	$K^{*0}\gamma$		$K^0_S \pi^0 \gamma$	
Source	S	C	S	C
E and p scales	± 0.017	± 0.015	± 0.083	± 0.047
Vertex measurement	± 0.021	± 0.009	± 0.023	± 0.036
Flavor tagging	± 0.005	$^{+0.012}_{-0.009}$	$^{+0.008}_{-0.009}$	+0.013 -0.009
Signal modeling	± 0.003	± 0.003	± 0.032	± 0.013
Δt resolution function	± 0.014	± 0.009	± 0.031	± 0.013
τ_{B^0} and Δm_d	< 0.001	< 0.001	± 0.003	< 0.001
$B\overline{B}$ background asym.	$+0.007 \\ -0.008$	± 0.011	$^{+0.030}_{-0.026}$	+0.049 -0.051
Tag-side interference	< 0.001	-0.002	+0.001	+0.001
Total	± 0.032	+0.026 -0.025	$^{+0.102}_{-0.100}$	± 0.080

Source	B	\mathcal{A}_{CP}
π^0 efficiency	8.6 %	n/a
$\Upsilon(4S)$ branching fractions $(1 + f^{+-}/f^{00})$	2.5~%	n/a
Continuum-suppression efficiency	1.9~%	n/a
$B\overline{B}$ -background model	1.7~%	0.034
Sample size $N_{B\bar{B}}$	$1.5 \ \%$	n/a
Signal model	1.2~%	0.021
Continuum-background model	0.9~%	0.025
Wrong-tag probability calibration	n/a	0.008
Total systematic uncertainty	9.6 %	0.048
Statistical uncertainty	15.9~%	0.303

- For $B^0 \to K_S^0 \pi^0 \gamma$ dominate systematic from vertex measurement: as main challenge was to find B^0 vertex without prompt tracks
 - Used $K^0_S
 ightarrow \pi^+\pi^-$ information and beamspot constraint