

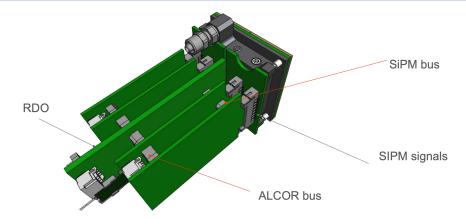
# eRD109 progress report dRICH RDO design @INFN Bologna

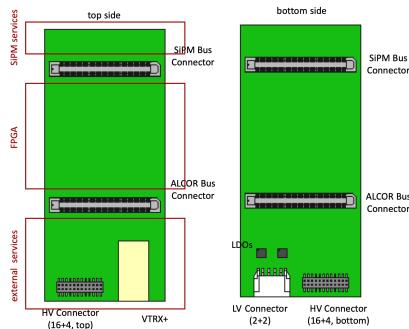
P. Antonioli, D. Falchieri, G. Torromeo (INFN – Bologna)

but... a lot of other people contributing in Bologna (L. Rignanese and R. Preghenella among others) and also from INFN-TO (F. Cossio, M. Mignone G. Dellacasa) and INFN-FE (R. Malaguti). Truly a joint project!

### Update on dRICH RDO design (April activity)

Istituto Nazionale di Fisica Nucleare


- challenging constraints on dimensions for dRICH (4x9 cm)
- design for schematics/selection of components in advanced progress
- Inclusion of VTRX in firmware design just started
- delivered 10 AU15P (Artix)
- delivered 10 MPF050T (PolarFire)


#### **Current components candidates:**

- Main FPGA: Xilinx AU15P-SBVB484
- Opt. tranc. VTRx+ + additional oscillator at 125 MHz
- Scrubber FPGA: Microchip MPF050T-FCS9325
- QSPI Flash: MT25QU01
- Samtec connectors (SiPM bus: ERF5-020-05.0-L-DV-TR and AlcorBus: ERF5-050-05.0-L-DV-K-T)
- Clock multiplier/jitter cleaner: SkyWorks SI5326 + additional crystal at 114 MHz
- T sensor: AD7416AR3 (close to LDOs and VTRX+)
- 1 MCU: ATtiny 416
- LDOs and current monitor: LTM4709 + LTC3203
- I2C I/O expander: Microchip MCP23017
- ADC for NTC sensors on SiPM carrier: TMP116NAIDRVT or TMP119

#### Report highlights on:

- design progress: clock distribution
- review request





And... we are currently very busy for May dRICH test beam firmware these days, sorry if we are a little bit slow on RDO!

# Jitter attenuator + clock multiplier selection





#### Si53xx-RM

**Table 1. Product Selection Guide** 

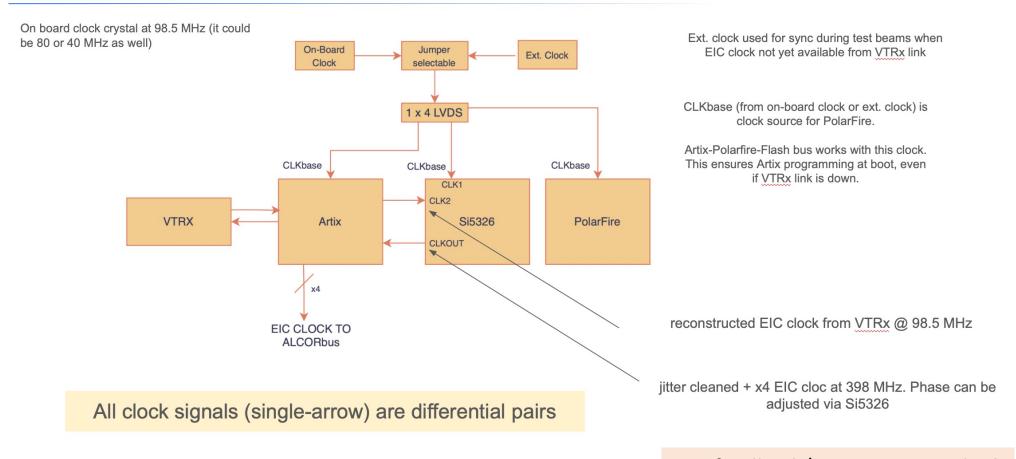
| Part<br>Number | Control              | Number of<br>Inputs and<br>Outputs | Input<br>Frequency<br>(MHz)* | Output<br>Frequency<br>(MHz) <sup>*</sup> | RMS Phase Jitter<br>(12 kHz–20 MHz) | PLL<br>Bandwidth   | Hitless<br>Switching | Free<br>Run<br>Mode | Package             |
|----------------|----------------------|------------------------------------|------------------------------|-------------------------------------------|-------------------------------------|--------------------|----------------------|---------------------|---------------------|
| Si5315         | Pin                  | 1PLL, 2   2                        | 0.008–644                    | 0.008–644                                 | 0.45 ps                             | 60 Hz to<br>8 kHz  | •                    |                     | 6x6 mm<br>36-QFN    |
| Si5316         | Pin                  | 1PLL, 2   1                        | 19–710                       | 19–710                                    | 0.3 ps                              | 60 Hz to<br>8 kHz  |                      |                     | 6x6 mm<br>36-QFN    |
| Si5317         | Pin                  | 1PLL, 1   2                        | 1–710                        | 1–710                                     | 0.3 ps                              | 60 Hz to<br>8 kHz  |                      |                     | 6x6 mm<br>36-QFN    |
| Si5319         | I <sup>2</sup> C/SPI | 1PLL, 1   1                        | 0.002-710                    | 0.002–1417                                | 0.3 ps                              | 60 Hz to<br>8 kHz  |                      | •                   | 6x6 mm<br>36-QFN    |
| Si5323         | Pin                  | 1PLL, 2   2                        | 0.008–707                    | 0.008–1050                                | 0.3 ps                              | 60 Hz to<br>8 kHz  | •                    |                     | 6x6 mm<br>36-QFN    |
| Si5324         | I <sup>2</sup> C/SPI | 1PLL, 2   2                        | 0.002-710                    | 0.002-1417                                | 0.3 ps                              | 4 Hz to<br>525 Hz  | •                    | •                   | 6x6 mm<br>36-QFN    |
| Si5326         | I <sup>2</sup> C/SPI | 1PLL, 2   2                        | 0.002–710                    | 0.002–1417                                | 0.3 ps                              | 60 Hz to<br>8 kHz  | •                    | •                   | 6x6 mm<br>36-QFN    |
| Si5327         | I <sup>2</sup> C/SPI | 1PLL, 2   2                        | 0.002–710                    | 0.002-808                                 | 0.5 ps                              | 4 Hz to<br>525 Hz  | •                    | •                   | 6x6 mm<br>36-QFN    |
| Si5328         | I <sup>2</sup> C/SPI | 1PLL, 2   2                        | 0.008–346                    | 0.002–346                                 | 0.35 ps                             | 0.05 Hz to<br>6 Hz | •                    | •                   | 6x6 mm<br>36-QFN    |
| Si5366         | Pin                  | 1PLL, 4   5                        | 0.008–707                    | 0.008–1050                                | 0.3 ps                              | 60 Hz to<br>8 kHz  | •                    |                     | 14x14 mi<br>100-TQF |
| Si5368         | I <sup>2</sup> C/SPI | 1PLL, 4   5                        | 0.002-710                    | 0.002–1417                                | 0.3 ps                              | 60 Hz to<br>8 kHz  | •                    | •                   | 14x14 mi<br>100-TQF |
| Si5369         | I <sup>2</sup> C/SPI | 1PLL, 4   5                        | 0.002-710                    | 0.002–1417                                | 0.3 ps                              | 4 Hz to<br>525 Hz  | •                    | •                   | 14x14 mi<br>100-TQF |
| Si5374         | I <sup>2</sup> C     | 4PLL, 8   8                        | 0.002–710                    | 0.002-808                                 | 0.4 ps                              | 4 Hz to<br>525 Hz  | •                    | •                   | 10x10 mi<br>80-BGA  |
| Si5375         | I <sup>2</sup> C     | 4PLL, 4   4                        | 0.002–710                    | 0.002-808                                 | 0.4 ps                              | 60 Hz to<br>8 kHz  | •                    | •                   | 10x10 mi<br>80-BGA  |
| Si5376         | I <sup>2</sup> C     | 4PLL, 8   8                        | 0.002–710                    | 0.002-808                                 | 0.4 ps                              | 60 Hz to<br>8 kHz  | •                    | •                   | 10x10 mi<br>80-BGA  |

we need two inputs:

- 98.5 MHz from crystal [per se could be also different...
- a 40 MHz and we then we apply factor 9/4..., or 80 MHz ...]
- 98.5 MHz from EIC CLK
- in 2024 version also ext input!!, use jumper to select between quartz and ext. input

2 outputs → 1 to ArtixFPGA → fanout x 4 to FEB via FPGA (as in KC705)

#### **CLK** signals in Artix:


- input from quartz or EXT
- output from Artix to SkyWorks
- input from SkyWorks

Si5326 provides phase adjustments

19

# Clock management





Any feedback/experience on this?

But...: Si5326 (to clean jitter) and Artix (to operate a Gbit link) require additional clocks!







SI5236 originally suggested by William Any experience in radiation?





#### **APPENDIX A—NARROWBAND REFERENCES**

To provide jitter attenuation, all Si53xx any-frequency jitter attenuating clocks require an external reference. In most cases, this function can be provided by a low cost crystal. The Si5316, Si5317, Si5319, Si5323, Si5324, Si5326, Si5366, Si5368 and Si5369 support two crystal options. For best jitter performance, a 3rd overtone 114.285 MHz crystal is recommended. For relaxed jitter or more cost-sensitive applications, a 37 to 41 MHz fundamental mode crystal may be used. For a current list of qualified crystals, see "Si531x/2x/6x Jitter Attenuating Clock Recommended Crystal List."

Third overtone crystals

#### Reference Source Selection

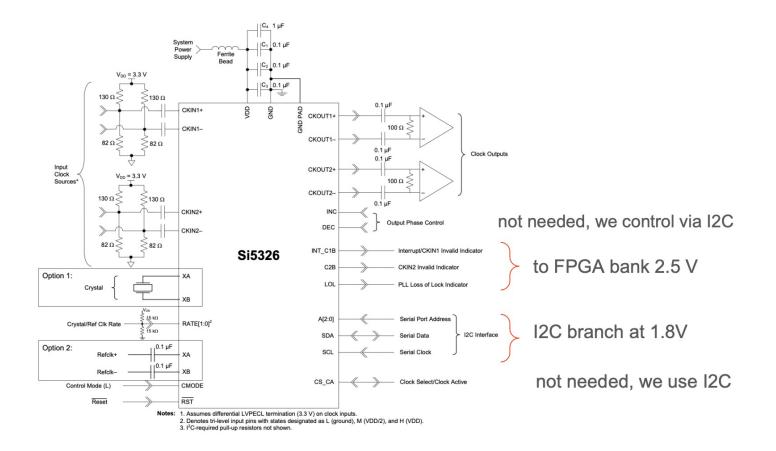
The SI53xx reference source is determined by the device RATE[1:0] pin settings as shown in the table below. Use RATE[1:0] = MM for the 3rd overtone 114.285 MHz crystal option. Use RATE[1:0] = LL for the 37 to 41 MHz fundamental mode crystal option.

#### Table 50. XA/XB Reference Sources and Frequencies

| RATE[1:0] | NB/WB | Туре                         | Recommended | Lower limit | Upper limit |
|-----------|-------|------------------------------|-------------|-------------|-------------|
| нн        | WB    | No crystal or external clock | _           | 1-1         | -           |
| НМ        | NB    | Reserved                     | _           | -           | -           |
| HL        | NB    | Reserved                     | _           | _           | -           |
| МН        | NB    | External clock               | 114.285 MHz | 109 MHz     | 125.5 MHz   |
| MM        | NB    | Third overtone crystal       | 114.285 MHz | -           | -           |
| ML        | NB    | External clock               | 57.1425 MHz | 55 MHz      | 61 MHz      |
| LH        | NB    | Reserved                     | -           | -           | -           |
| LM        | NB    | External clock               | 38.88 MHz   | 37 MHz      | 41 MHz      |
| LL        | NB    | Fundamental mode crystal     | 40 MHz      | 37 MHz      | 41 MHz      |

<u>....</u>

Dimensions (mm): all 3.2 x 2.5 mm except AVX (which is not 3OT) which is 2x1.6 mm package


#### Certified crystals by SkyWorks:

https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/reference-manuals/si531x-2x-6x-reference-manual.ndf

| Manufacturer     | Part Number⊉.5          | Website                            | Stability<br>(± ppm) | Accuracy<br>(± ppm) |
|------------------|-------------------------|------------------------------------|----------------------|---------------------|
| Abracon          | ABM8-116-114.285MHZ-T   | www.abracon.com                    | 20                   | 20                  |
| AVX <sup>2</sup> | CX2016DB114M2P0HPLC1    | http://www.kyocera-crystal.jp/eng/ | 20                   | 20                  |
| Connor- Winfield | CS-023E <sup>3</sup>    | www.conwin.com                     | 20                   | 20                  |
| Hosonic          | E3SB114.285T00M33       | www.hosonic.com                    | 30                   | 30                  |
| ILSI             | ILCX13-114.285000M-2795 | www.ilsamerica.com                 | 20                   | 20                  |
| NDK              | EXS00A-CS00871          | www.ndk.com                        | 100                  | 100                 |
| NDK              | EXS00A-CS00997          | www.ndk.com                        | 20                   | 20                  |
| NDK              | EXS00A-CS06528          | www.ndk.com                        | 20                   | 20                  |
| Pericom          | FLB420004 <sup>4</sup>  | www.pericom.com                    | 20                   | 20                  |
| Rakon            | 514324                  | www.rakon.com                      | 20                   | 20                  |
| Rakon            | 513553                  | www.rakon.com                      | 100                  | 100                 |
| Taitien          | S0242-X-003-3           | www.taitien.com                    | 20                   | 20                  |
| TXC              | 7MA1470002              | www.txc.com.tw                     | 20                   | 20                  |
| TXC              | 7MA1472001 <sup>5</sup> | www.txc.com.tw                     | 100                  | 100                 |
| Vectron          | VXM7-1074-114M285000    | www.vectron.com                    | 100                  | 100                 |
| Vectron          | VXM7-1191-114M285000    | www.vectron.com                    | 20                   | 100                 |

## Si5236 connections





we need to drive this at 1.8V

# RDO SoW - Milestones status & outlook



- Design and realisation of a specific ePIC RDO card prototype, housing a FPGA, LDO, optical transceiver and I/O and LV power connections to provide the read-out to four ALCOR v3 ASIC. A high degree of integration is foreseen between the RDO card and the 4 FEBs that will house each an ALCOR64 v3 chip.
- as per report design is in progress, no major show stoppers identified

- Realization of a RDO card ePIC-compliant for the ALCOR readout: 10/2024
- on target, schematics should go to ext. company for layout in May.
   Delivery in October possible. Full FW development/test will go beyond 10/24!

#### Next steps:

- Discussion with FEB team to consider direct routing of SIPMbus to FEB. If agreed this will simplify RDO layout
- Inclusion of Flash and Polarfire connections in firmware design
- Finalize design → "EIC/ePIC review?" (we believe we would benefit of a closer look from experienced people in the community: William, Jeff, Tonko and Jo obvious candidates but conveners to lead...)