Status of the eRD109 "RDO/Timing/Service Hybrid"

EPIC DAQ Meeting, 02-May-2024

Wei Li, Mike Matveev, Tonko Ljubicic (Rice University)
William Gu (Jlab), as an external contributor and interested party

> Zhenyu Ye (LBL)

Prithwish Tribedy, Prashanth Shanmuganathan (BNL)

Status as of today

	Feb 1	Mar 7	Apr 4	May 2, 2024 (today)	In Proposal
Schematics	90%	100%	100%	100%	100%
Oth firmware	90%	100%	100%	100%	Jun 1
Purchase long-lead items	0%	100% FPGA 90% others	100%	100%	Jun 1
Board layout	50%	90%	50%	100%	100%
PCB design	0%	\sim Apr April	Apr 18 (expected) 6 boards	Received all 6 boards Production complete	Aug 1
Boards complete	-		Sep 31		

\Rightarrow comfortably ahead of schedule

Board status

- $5 / 6$ boards work well
- power OK, FPGA programming OK, PROM OK, PLL I2C programming OK, all clocks OK...
- 1 board with bad FPGA - sent back and will be fixed
- Minor issues
- schematics error: swapped AC coupling caps and terminating resistors between PLLs \Rightarrow easy fix by hand
- 1 SMA debugging connector of 1 board has a short to GND \Rightarrow not fixed, we don't use it
- 2 boards shipped to WG \& TL for firmware development
- 1 board stays at Rice for tests as well as CMS ETL ETROC integration
- Production Details (previously requested by Fernando)
- 10 layer PCB
- single company did the PCB layout design, PCB manufacturing and parts assembly ("Pactron", Santa Clara, CA) with excellent results and on time!
- Cost for quantity=6
- PCB layout design: $\$ 4800$
- parts: $\$ 600$ per board
- PCBs \& assembly: $\$ 4950+\$ 950$ NRE

ppRDO photos

ppRDO Board

From Mike Matveev/Rice
(note components):

\square Prototype of the TOF Readout Board built with the following goals

- Evaluate various clocking schemes on the board
- Evaluate clock distribution via optical link
- Develop firmware communication protocols with the Readout ASICs and backend
- Evaluate FPGA resources required, power consumption and mechanical constraints

Summary

- Hardware production complete
- Firmware development progressing
- William/JLAB: fiber protocols, clock recovery
- TL: framework, I2C interfaces, PLL control, ASIC emulator, readout...
- Goal: June/July to have all the subroutines \& primitives in hand
- Precise power measurements (@BNL \& Rice) as the firmware progresses
- 0th version dummy firmware measured right now at Rice

■ at the PS: 4V @ 1.2 A with all clocks ticking

- at the regulators
- 3.3V: 550 mA (but with all 3 SFPs running)
- 1.8V: 600 mA
- $0.85 \mathrm{~V}: 100 \mathrm{~mA}$
- other: too low to measure with the 0th FW
- measurements will continue as the FW keeps building up

