DAQ requirements for EIC Compton Polarimeters

- The two Compton polarimeters for EIC will operate in two very different modes → very different DAQ requirements
- ESR Compton:
 - Operation mode = single photon
 - Want to "count" scattered particles, but bunch spacing small (as low as 10 ns), bunch frequency large (100 MHz)
 - Measure polarization for each bunch
- RCS Compton
 - Operation mode = multi-photon (integrating)
 - Bunch frequency much lower
 - Polarization will be averaged over several bunches

ESR Compton

Laser system designed to provide ~ 1 backscattered photon per electron bunch

ightarrow Read out every 10 ns at 100 MHz

Two styles of detectors:

- Position sensitive detectors
 - 4 planes for detecting scattered electrons (on order of 100 strips/plane)
 - 2 planes in front of photon calorimeter
 - Will use diamond strips with custom ASIC (FLAT32?)
 - Just need to count (LVDS) pulses no amplitude information
 - Time above threshold useful not a requirement
- Photon calorimeter
 - Tungsten powder + scifi (or something w/ similar time response)
 - Might use single PMT or several smaller PMTs
 - Would like to operate in energy-weighted, threshold-less mode
- Readout
 - Position sensitive detectors → module similar to JLab VETROC or CAEN 1495 with high-rate capability
 - Calorimeter → flash ADC, firmware appropriate for energy-weighted counting

ESR Compton – Thoughts on Readout

I assume that reading out modules at 100 MHz is challenging

We will need to flip laser helicity regularly to measure asymmetry - this will take on the order of 100 μ s \rightarrow Perhaps this interval can be used for readout?

Accumulate information in FADC/VETROC for each bunch (1160 bunches) then read out during laser flip? \rightarrow Need each bunch information separately – can modules store this much information? \rightarrow If so, can we retain information about bunch identity?

RCS Compton

Electron bunches injected at 1-2 Hz, ramped from "0.4 GeV" to 5/10/18 GeV Bunch charge up to 28 nC Ramping time = 100 ms

Impossible to measure polarization for each bunch due to continuously changing energy
→ Average over all bunches

Use low duty cycle pulsed laser \rightarrow hundreds to thousands of backscattered electrons per laser pulse

Detectors

- Position sensitive → need to measure spatial dependence since polarization transverse
 - 2 planes, on the order of 100 channels
- Photon calorimeter, 1-16 channels

Parameter	5 GeV	10 GeV	18 GeV
Injection energy [MeV]		400	
Momentum compaction α_c		0.000372	
Max relative pol. loss		5%	
Circumference [m]		3841.35	
Ramping repetition rate [Hz]		1	
Acceleration time [ms], [turns]		100, 8000	

RCS parameters

Readout

- Both position sensitive detectors and calorimeter will operate in integrating mode, so will have to be read out using ADCs
- Readout frequency low even if we try to measure several energies at once (as bunches are ramped) will have ~ 12.5 µs between bunches
- Will need information from accelerator with respect to where we are in acceleration cycle

Other requirements

Several other signals will need to correlated with detector readout

- \rightarrow Beam position (check for position asymmetries)
- ightarrow Beam intensity
- \rightarrow Laser signals (power, trajectory, polarization state, etc.)
- ightarrow Electron detector position
- → Rates in ancillary detectors (check for changing backgrounds)