pfRICH LUT spot checks with new magnetic field map

ePIC physics and detector simulation meeting

Youqi Song (Yale)

6/18/24

Overview

pfRICH (proximity-focusing Ring Imaging Cherenkov)

- Crucial for PID in the e-going direction in $-3.5 < \eta < -1.5$
- Expected momentum reach:

IP

competing particle species	separation range (GeV/c)
e $vs \pi/K/p$	$\sim 0.2 \div \sim 2.5$
K vs π/p	$\sim 2.0 \div \sim 9.0$

- New set of LUTs uploaded to epic-data repository (https://github.com/eic/epic-data) on May 6, for May simulation campaign
 - Simulations run with standalone software (https://github.com/eic/pfRICH)
 - Updated vertex smearing, geometry changes...
 - Higher statistics and finer binnings: 100M events in total per species; $37 \times 20 \times 120$ bins in $p \times \theta \times \phi$
- New magnetic field map
 - MARCO_v.6.4.1.1.3_1.7T → MARCO_v.7.6.2.2.11_1.7T
 - Did spot checks to see if performance is impacted

Setup

- May campaign: 400M particles thrown (100M e, π , K, p each), flat in:
 - $p \in (0.1, 15)$ GeV, $\theta \in (2.65, 3.1)$, $\phi \in (-\pi, \pi)$
- Spot check: half statistics so far
- Kinematics selection 1:
 - $p \in (1.6, 2.0)$ GeV \rightarrow focus on a low momentum bin, where any change in B field would impact performance more. Expect good e/hadron separation in this range.
 - $\theta \in (2.875, 2.8975) \rightarrow \eta \in (-2.10, -2.01)$
 - $\phi \in (0,3)$ degree
- Note: 5th column (fail) is for number of reconstructed photons < 3

- Kinematics selection 1:
 - *p* ∈ (1.6, 2.0) GeV
 - $\theta \in (2.875, 2.8975) \rightarrow \eta \in (-2.10, -2.01)$
 - $\phi \in (0,3)$ degree

 Spot check result consistent with May campaign

- Kinematics selection 1:
 - *p* ∈ (1.6, 2.0) GeV
 - $\theta \in (2.875, 2.8975) \rightarrow \eta \in (-2.10, -2.01)$
 - $\phi \in (0,3)$ degree
- Estimate roughly relative uncertainty using Poisson statistics

 Spot check result consistent with May campaign

Counts/bin

- Kinematics selection 2:
 - *p* ∈ (1.6, 2.0) GeV
 - $\theta \in (2.7625, 2.785) \rightarrow \eta \in (-1.71, -1.65)$: Expecting higher fraction of "fail" in this η range (see backup)
 - $\phi \in (0,3)$ degree

- Kinematics selection 2:
 - *p* ∈ (1.6, 2.0) GeV

- Spot check result consistent with May campaign? Perhaps higher statistics is needed to confirm
- $\theta \in (2.7625, 2.785) \rightarrow \eta \in (-1.71, -1.65)$: Expecting higher fraction of "fail" in this η range (see backup)
- $\phi \in (0,3)$ degree

- Kinematics selection 3:
 - *p* ∈ (1.6, 2.0) GeV
 - $\theta \in (2.875, 2.8975) \rightarrow \eta \in (-2.10, -2.01)$
 - $\phi \in (9, 12)$ degree: Avoiding inefficiency at 0 (compared to 1) p3t10phi63

kinematic selection

Conclusions

- We compared pfRICH PID LUT before and after magnetic field update
- Overall, the effect is insignificant

Backup

- Kinematics selection 2:
 - *p* ∈ (1.6, 2.0) GeV
 - $\theta \in (2.7625, 2.785) \rightarrow \eta \in (-1.71, -1.65)$:

Expecting higher fraction of "fail" in this η range

• $\phi \in (0,3)$ degree

Youqi Song (Yale)

- Kinematics selection 3:
 - *p* ∈ (1.6, 2.0) GeV
 - $\theta \in (2.875, 2.8975) \rightarrow \eta \in (-2.10, -2.01)$
 - $\phi \in (9, 12)$ degree: Avoiding inefficiency at 0

