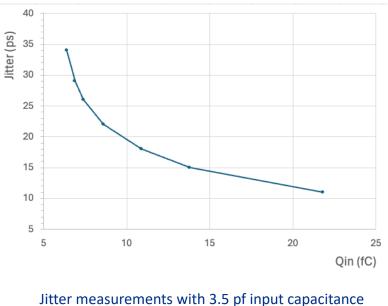

eRD109 5/8/24

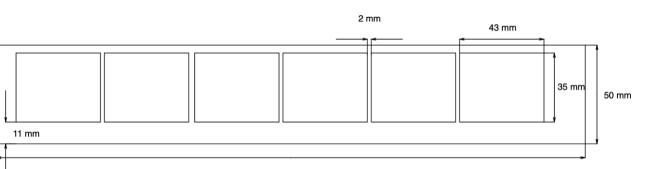
- EICROC:
 - EICROC0 (4x4) being measured. EICROC0A/B to investigate digital noise and reduce ADC power.
 - EICROC1 (8x32) layout started, with selective EICROC0-like readout (hit+9 neighboring channels),
- FCFD:
 - FCFDv1 (6) being tested. FCFDv1 connected to 5mm strip sensors will be tested with beam in May
- Low mass FPC (and bonding)
 - FPC will be produced with HV, LV to study co-curing with CF modules and mechanical properties
- ppRDO:
 - 6 boards produced and being tested, FW under development.

- EICROC0 still under measurement
 - See https://indico.bnl.gov/event/23162/
 - Triggered readout, all data shipped out : 16 ch * 8 samples ADC + TDC
 - Present power ~2 mW/ch (+ 4*20 mW « analog probe preamp »)
 - New versions prepared 4x4
 - Digital noise investigation
 - ADC power + shaper/driver to be reduced from ~1 mW to 100 μ W/ch => EICROC0A
 - EICROC0A/B : simulations and layout in progress
- EICROC1 will address larger dimensions : <u>8x32</u>
 - Address floor planning and power distribution
 - Selective readout : hit + 9 neighbouring channels
 - Status : layout started based on EICROC0, adding more testability
 - Still EICROC0-like readout
- Submission in ER fall/end 2024


Christophe

Status and Next plans

- FCFDv1 chip is now being tested
 - Measurements with internal charge injections performed with an LGAD-like signal being injected.
 - With input capacitance ~3.5 pF we achieve around 11 ps time resolution
 - The analog output works linearly over the range of input charge from 7 fC to 60 fC, the discriminator flip time output stays constant within around 10 pS


and charge injection

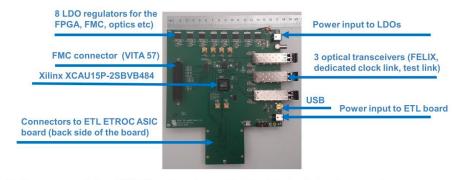
- We have now started preparing for the test beam in FNAL in the end of May
- Our measurements of the AC-LGAD strip sensors showed the complex CRnetwork which complicates operation of the ASIC
 - Additionally, the capacitance for some of the sensors is a lot larger than we originally specified
 - Hamamatsu 5mm E-type strip sensors behave the best so far, and we are now adapting the readout board to optimize performance
 Fermilab

2

Flex PCB R&D

- LFHCAL Flexes assembled by vendor, will be included in CERN HGCROC Test campaign
 - Not yet tested, on their way back
- First barrel TOF mechanics test structures produced at Purdue
 - Next step: co-cure Kapton flex into 12" carbon fiber structure, bond sensors and Si-heaters onto structure
- Designing test flex for co-curing:
 - LV, HV, maybe some temperature sensors
 - 2 layers first, multi layer for exploration later
 - Produce in different stackups to test mechanical stability and precision (12" within reach of all standard manufacturers)
 - Ideally produced with peel-off kapton film on top to keep ENIG pads clean from resins etc.

300 mm



Oskar

Summary

- Hardware production complete
- Firmware development progressing
 - William/JLAB: fiber protocols, clock recovery

□ Prototype of the TOF Readout Board built with the following goals

- Evaluate various clocking schemes on the board
- Evaluate clock distribution via optical link
- Develop firmware communication protocols with the Readout ASICs and backend
- · Evaluate FPGA resources required, power consumption and mechanical constraints
- TL: framework, I2C interfaces, PLL control, ASIC emulator, readout...
- Goal: June/July to have all the subroutines & primitives in hand
- Precise power measurements (@BNL & Rice) as the firmware progresses
 - Oth version dummy firmware measured right now at Rice
 - at the PS: 4V @ 1.2 A with all clocks ticking
 - at the regulators
 - 3.3V: 550 mA (but with all 3 SFPs running)
 - 1.8V: 600 mA
 - 0.85V: 100 mA
 - other: too low to measure with the 0th FW
 - measurements will continue as the FW keeps building up