Development of Inverse Compton Scattering

 \rightarrow For ~100 keV Hard X-ray ICS by TW CO₂ laser

BNL ATF Science Planning Workshop, 2024

Yusuke Sakai, James Rosenzweig, UCLA-PBPL

AE70: Basic study on the nonlinear Compton & AE87: Hard X-ray ICS by Nd: YAG laser → Goal of experiment AE131 Harmonic Nonlinear Inverse Compton Scattering

Strong field physics: Bi-harmonic Compton interaction
X-ray OAM investigation: Higher order harmonics by circular polarized CO₂ laser
Hard X-ray optics developments: DDS measurement & Focusing, Collimation

Nonlinear ICS: $a_L \sim 1^*$, Transverse motion \rightarrow Relativistic, nontrivial longitudinal oscillation Slow down electron's velocity, or Effective mass increase

Bi-harmonic nonlinear Compton interaction (AE131)

Numerically calculated Lienard-Wiechert potential $E_{LW,x}(t_{screen})$ on (x, y, z) = (0, 0, 0)

AE87: Hard X-ray inverse Compton scattering at photon energy of 87.5 keV In a single shot (~10⁶ photon yield / pulse) Nd: YAG laser 1064 nm & 70 MeV e-beam

Numerically calculated DDS with various e-beam size $(a_{L,0} = 0.1)$

Status of AE131 experiment

Owing to newly installed ATF's polarization rotator of multi TW CO₂ laser rotator $(2 \times 22.5 \text{ deg rotation} + \text{wave plate mirror})$

Quick testing: Circularly polarized ICS \rightarrow

2nd harmonic X-ray verified

*Although, 50% of laser flux goes through a on-axis hole

20

energy [keV] 10

Photon

5

-5

Numerical

Al 250 µm

Estimate

With

Filter

2nd

Low energy shot

a_{L,0} ~ 0.6

3 J shot $a_{L,0} \sim 1.0$

6 J shot $1 < a_{L,0} < 1.5$

 $a_{L,0} = 0.6$

0

Radiation angle x [mrad]

5

[ntensity [arb. unit]

0.8

0.6

0.4

0.2

 \rightarrow Ready to observe Bi harmonic effect in next 2 years (via K-edge filtering to see the red shifting of 87 keV X-ray)

AE70: Double Differential Spectrum measurement of the ICS X-ray by

Mo/Si curved Multi-layer* spectrometer (2015-2017yr) 10⁹ photons / shot at ~10 keV

*Developed by NSLS P. Siddons et. al. 2003yr

Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime, Y. Sakai , J. Rosenzweig, T. Kumita, Y. Kamiya, P. Siddons, I. Pogorelsky, V. Yakimenko, et. al., Phys. Rev. ST Accel. Beams (2017)

Single shot DDS measurement at 100 keV X-ray

 \rightarrow <u>100 keV X-ray optics developments</u> Collaboration with NSLS II 150 keV section Z. Zhong

→ Thick Laue Bent Crystal Efficiency > Bandwidth

- ***** Radius of curvature R: 2.5 m
- Thickness: 1 mm
- * Bragg angle at 85 keV: ~22 mrad $\leftrightarrow 1/\gamma = ~10 mrad (60-70 MeV)$
- * Crystal to MCP screen 0.3 m
- ★ Expected dispersion at screen: ~ 20 mm ↔ Screen size ~ 20 mm
- ***** Band width: ~ 10 keV
- ★ Reflectivity (Efficiency): ~10%

Theta-Theta Bragg [urad] Rocking curve for Bent crystal, R2m, Si[111], X-ray energy 80 keV. By XOP v2.3.

Stats: Diffraction not observed yet by YAG ICS (100 mJ / pulse), 70 MeV e-beam

- \rightarrow <u>~10⁶ photon yield / shot is not enough</u>
- → <u>*TW CO₂*? (10J/pulse), 200 MeV e-beam?</u>

70 MeV ICS by

1064 nm, Nd: YAG

GUN

Quad Chart

Scientific/Technical Outcomes

- Summary of approach
- > AE131 (in 2 years) experiment mainly on proof of principle demonstration on the Bi harmonic Compton interaction
- >> NEXT, Development of ICS at ~100 keV X ray, ~10⁹⁻¹¹ photons / shot ?

Lasers/e-beam Parameters Required

- What combination of capabilities enables you to make a breakthrough? > Stable ~200 MeV electron beam in BL1
- Required diagnostics > Especially X-band T-Cav in BL2 first >> Repair of the 15MW X-band Klystron asap (Or Obtain a 5MW Klystron with SLED)

ATF Facilities Upgrade Roadmap

- > LLRF-RF entire system examination & rebuild for stable e-beam operation first (Detailed e-beam study from Gun & LLRF-Laser monitors)
- > NEXT, explore e-beam energy boost: SLED for linac RF & X-band (or C-band) linac in EH?

Beyond the Current Roadmap

- > Construction of sub GeV linac in Build 912 someday
- > Construction of the 100 J / pulse final CO₂ laser amplifier <u>someday</u>
- > Mode conversion of TW CO₂ laser for short range Vacuum Laser Acceleration

Current Electron Beam

Parameter	Units	Typical Values	Comments
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level
Transverse size at IP (s)	mm	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.
Normalized Emittance	mm	1 (at 0.3 nC)	Variable with bunch charge
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.

Available CO₂ Laser Requirements

Configuration Parameter		Units	Typical Values	Comments
CO ₂ Regenerative Amplifier Beam	Wavelength	mm	9.2	Wavelength determined by mixed isotope gain media
	Peak Power	GW	~3	
	Pulse Mode		Single	
	Pulse Length	ps	2	
	Pulse Energy	mJ	6	
	M ²		~1.5	
	Repetition Rate	Hz	1.5	3 Hz also available if needed
	Polarization		Linear	Circular polarization available at slightly reduced power
CO ₂ CPA Beam	Wavelength	mm	9.2	Wavelength determined by mixed isotope gain media
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	ΤW	5	~5 TW operation will become available shortly into this year's experimental run period. A 3-year development effort to achieve >10 TW and deliver to users is in progress.
	Pulse Mode		Single	
	Pulse Length	ps	2	
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will become available within the next year
	M ²		~2	
	Repetition Rate	Hz	0.05	
	Polarization		Linear	Adjustable linear polarization along with circular polarization can be provided upon request

Other Experimental Lasers

Ti:Sapphire Laser System	Units	Stage I Values	Stage II Values	Comments
Central Wavelength	nm	800	800	Stage I parameters are presently available and setup to deliver Stage II parameters has been completed
FWHM Bandwidth	nm	20	13	
Compressed FWHM Pulse Width	fs	<50	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.
Chirped FWHM Pulse Width	ps	≥50	≥50	
Chirped Energy	mJ	10	200	
Compressed Energy	mJ	7	~20	20 mJ is presently operational with work underway this year to achieve our 100 mJ goal.
Energy to Experiments	mJ	>4.9	>80	
Power to Experiments	GW	>98	>1067	

Nd:YAG Laser System	Units	Typical Values	Comments
Wavelength	nm	1064	Single pulse
Energy	mJ	5	
Pulse Width	ps	14	
Wavelength	nm	532	Frequency doubled
Energy	mJ	0.5	
Pulse Width	ps	10	