# Follow up discussion on timing protocol

Jin Huang (BNL)



In follow up to William's talk on Apr-11 [link] Thanks to discussion with William Gu With aim towards writing the timing protocol specification document

# **BCO embedding in GTU->DAM->RDO links?**

- Separated clock/frame counters at GTU/DAM/RDO levels can be error prone
  - Example used in PHENIX and part of sPHENIX. Prone to misalignment
- Alterative is to broadcast beam clock counter (BCO) from GTU on every clock cycle using MGT links
  - Example used in sPHENIX GTU->DAM links
  - GTU keep a master 64bit BCO. Persistent at power off; Never rollover, start from 0 from first GTU power on
  - 7.88Gb/s GTU->DAM link (8Byte \* 8b10b \* 9.5MHz)
    - Lower 48bit of master BCO (rollover in one month>>1 run)
    - 8 bit of GTU fast command bit [Reset, RevTick, TimeFrameStart, TimeFrameEnd, 4 user bits]
    - User bits are subsystem specific, usually doing specific task synced with beam orbit, such as calibration pulser during abort gap
    - Comma character: easy realign links during operation
  - In data time frame is identified by the start BCO counter
- BCO Used in online/offline processing to sync and ID timeframes and events

#### William's slides Apr-11 [link]

3. Detailed signal implementations 3.4: Fiber link between GTU and DAM:

| Fransmitters | Downlink GTU_CONTROL, 8-bits (+ 1 k_bit                                                                                         | ) @ 98.5 MHz                            |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| GTU          | Downlink:         8-bit plus K-bit, Beam Orbit synchroniz           Uplink:         8-bit plus K-bit, DAM and the DAM connected | ed RunControl command                   |
| Receivers    | Uplink DAM/RDO Status, 8-bits (+ 1 k<br>Clock feedback @ 98.5 MHz, 197 MH                                                       | bit) @ 98.5 MHz<br>Iz, or maybe 394 MHz |

Using FireFly TX/RX modules will save power than regular QSFP optic transceivers, but the fiber connection/mapping can be challenging (easy to make mistake).

sPHENIX clock data embedding in GTU->DAM link at 6x 9.4MHz beam clock, 12Byte/beam clock [sPHENIX TDR]

| clock count |               | 0           | 1            | 2             | 3              | 4              | 5              |
|-------------|---------------|-------------|--------------|---------------|----------------|----------------|----------------|
| bits 0-7    | mode bits/BCO | mode bits   | BCO bits 0-7 | BCO bits 8-15 | BCO bits 16-23 | BCO bits 24-31 | BCO bits 32-39 |
| bit 8       | beam clock    | 1           | 0            | 0             | 0              | 0              | 0              |
| bit 9       | LVL1 accept   | Х           | 0            | 0             | 0              | 0              | 0              |
| bit 10      | endat0        | Х           | Х            | Х             | Х              | Х              | Х              |
| bit 11      | endat1        | X           | Х            | Х             | Х              | Х              | Х              |
| bit 12      | modebit en.   | 1           | 0            | 0             | 0              | 0              | 0              |
| bits 13-15  |               | 3 user bits | 0            | 1             | 2              | 3              | 4              |
|             |               |             |              |               |                |                |                |
|             |               |             |              |               |                |                |                |



## MGT based GTU->DAM links?

- Use 10Gbps capable GTU->DAM optical links
- DAM belong to the same subsystem receive identical GTU data from a single MGT→Fanout→Firefly
  - Reduce the MGT use in GTU to ~30
  - Example implementation in sPHENIX
  - DAM specific config received via slow control interface via PCIe from EBDCs
- Feedback from DAM->GTU are low speed that use IO pins

Busy feedback, clock feedback for TOF-like

| Detector        |       |         | Channels |      |       | RDO  | Fiber | DAM | Data                      | Data                          |
|-----------------|-------|---------|----------|------|-------|------|-------|-----|---------------------------|-------------------------------|
| Group           | MAPS  | AC-LGAD | SiPM/PMT | MPGD | HRPPD |      |       |     | Volume<br>(RDO)<br>(Gb/s) | Volume<br>(To Tape)<br>(Gb/s) |
| Tracking (MAPS) | 36B   |         |          |      |       | 400  | 800   | 17  | 26                        | 26                            |
| Tracking (MPGD) |       |         |          | 202k |       | 118  | 236   | 5   | 1                         | 1                             |
| Calorimeters    | 500M  |         | 104k     |      |       | 451  | 1132  | 19  | 502                       | 28                            |
| Far Forward     | 300M  | 2.6M    | 170k     |      |       | 178  | 492   | 8   | 15                        | 8                             |
| Far Backward    | 82M   |         | 2k       |      |       | 50   | 100   | 4   | 150                       | 1                             |
| PID (TOF)       |       | 7.8M    |          |      |       | 500  | 1500  | 17  | 31                        | 1                             |
| PID Cherenkov   |       |         | 320k     |      | 140k  | 1283 | 2566  | 30  | 1275                      | 32                            |
| TOTAL           | 36.9B | 10.4M   | 596k     | 202k | 140k  | 2980 | 6826  | 100 | 2,000                     | 96                            |





ePIC DAQ counting

## **Unlink DAQ Time-Frames from Beam Revolution?**

- Proposed ePIC Time Frame specification
  - <=2^16 crossing: 16-bit integer sufficient to locate hit's BX in Time Frame; <=665us/300 events/10MB</p>
  - Exact length defined by GTU sync signal: most flexible
- There is advantages to detach time-frame from beam revolution
  - DAQ/electronics should be able to handle conditions where beam revolution/abort gap do not apply : e.g. cosmic data, test beam
  - EIC intend to control relative luminosity to 10e-4 level; alignment of time-frame to beam revolution risk align subtle pattern recognition efficiency bias with the spin states
- From upstream of DAQ:
  - Hits are sorted and time-index within time frame. Depending on subsystem, can happen at ASIC, RDO, or DAM levels.
  - Can be organized in sub-timeframe slices depending on subsystem need (example is SVT uses a few us strobe window)
- For downstream of DAQ:
  - Time Frames will be order in data files
  - Neighboring time frames should be used to recover hits at the edge of the time frames
  - Offline has flexibility to process 1 or N time frames together at one processing cycle that best fit the processing hardware



# **Extra Information**





Jin Huang <jhuang@bnl.gov>

## **DAQ File Organization (Example...)**

From Mar-21 meeting, Jeff's talk on Time Frame Organization and Data Volumes [link]



#### Readers From Mar-21 meeting, Jeff's talk on Time Frame Organization and Data Volumes [link]

Two distinct sets of readers needed

Data Bank Navigation

rdr = getBank("NameOfBank") or rdr = getBank(TimeFrame, "Ifhcal/dam\_3/rdo\_6/raw")

Detector Bank specific readers (presumably implemented as plugins)

```
hit = rdr->nextHit()
hit.bx
hit.highResTOA
hit.channel
hit.adc
```

- Could, of course have multiple readers instantiated at a time for simultaneous decoding
- One likely needs to fill intermediate data structure for processing, so time frame for DAQ and time frame for tracking need not be tied together!



## **Discussion 1: event keying**

- One way to view information provided by streaming DAQ is clock triggered events at *each* beam bunch crossing; offline reconstruction/analysis apply event selections to select the interesting set of events for physics measurements
- Option 1 for event key is the beam crossing counter
  - GTU counting 98.5MHz beam crossing clock with a 64bit counter
  - DAQ/electronics will broadcast EIC beam crossing counter to indexing all detector hits
- Option 2 for event key could be a tuple (run, time-frame, crossing counter in time-frame)
- Either is sufficient. Could use both too

Reference to last meeting,



Nathan's talk [link]

#### Event key

- Generalizes the concept of event number and possibly run number to streaming scenarios
- Event number: For each level in the event hierarchy, have:
  - Absolute number: Starts at 0, increments by 1 monotonically
  - Relative number: Starts at 0 for each parent, increments by 1 monotonically
  - User key: Could be anything
- Run number:
  - Key for reloading resources such as calibrations
  - Helps to be a number, not an interval

Jin Huang <jhuang@bnl.gov>

## **Discussion 2: what is an (DAQ) run for ePIC?**

This is a discussion. Scenarios for a "DAQ run" could be:

- Electron bunch replacement at O(1)Hz
  - Restarted automatically driven by accelerator bunch replacement control
  - Effectively a *luminosity block*, O(1000) ePIC time frames, require lumi/polarization measurement, scalar reading synchronized to the edge of the lumi window
- Data taking period between human-driven configuration changes (~1hr)
  - Commonly used by many experiment, neatly mapped in configuration DB storage
- Entire hadron ring fill (few hours)
- Not using a DAQ run concept, just luminosity blocks/time frames
   In any case, run start/end will be marked with beam crossing counter at GTU



## **Discussion 3: slow control (SC) data**

- It is good practice to embed slow control data in raw data, but embedded data are hard to use
  - Some periodic reading require interpolation between readings (e.g. temperature); some requires future slow control reading (masking unstable FEEs in deadmap)
- Slow control data will be recorded to online DBs
  - Slow control recording persists regardless data taking
  - A mirror of online DB will be available for offline use
- Suggest detach slow control data access from reconstruction pass
  - Instead, use online database sources to produce calibration files (gain map, deadmap, etc.) as input to reconstruction, with validity marked with beam counter ranges
  - Use (automated) calibration job to process slow control data to form calibration input to reconstruction jobs, fits well in the multi-pass calibration computing plan
- Calibration access require scalable calibration database in offline world





<u>Reference to last meeting,</u> Nathan's talk [link]

Jin Huang <jhuang@bnl.gov>

**DAQ** Meeting



# Discussion 4: Calibration workflow

 Calibration workflow seems fits into the prompt reconstruction computing model. Inputs welcomed.

May 1

High level summary plot:

May 1

Tracker Calib/Alignment

RICHs Calib/Alignment →

| 12  | • fx                  |                |                                                                                                                        |                                                                                                                                  |                            |                                                                      |                              |                            |           |                         |           |           |           |           |           |            |                    |                                            |
|-----|-----------------------|----------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------|------------------------------|----------------------------|-----------|-------------------------|-----------|-----------|-----------|-----------|-----------|------------|--------------------|--------------------------------------------|
|     | A                     | В              | c                                                                                                                      | D                                                                                                                                | E                          | F                                                                    | G                            | н                          | 1         | 1                       | К         | L         | М         | N         | 0         | P          | Q                  | R                                          |
| 1   |                       |                | Pre-physics-operation                                                                                                  | Steady State calibrations: aim to pro                                                                                            | duce final re              | construction-ready calibi                                            | ation within few             | days of physics            | s data ta | king in a               | continou  | s process | l .       |           |           |            |                    | Post-reconstru                             |
|     | Subsystem             | Region         | calibrations<br>(Cosmic, no-beam calibration,<br>commissioning)                                                        | Task                                                                                                                             | Human<br>intervention<br>? | Data Needed                                                          | Dependecy                    | T0 + 12hr T0 +             | 24hr T0   | ) + 36hr T              | 0 + 48hr  | T0 + 60hr | T0 + 72hr | T0 + 84hr | T0 + 96hr | Monitoring | Computing resource | calibrations<br>(applied at ana<br>stages) |
| 8   | MAPS                  | Barrel+Disk    | Threshold Scan<br>Fake rate scan/noisy pixel masking                                                                   | (See Alignment)                                                                                                                  |                            |                                                                      |                              |                            |           |                         |           |           |           |           |           |            |                    |                                            |
|     | MPGD                  | Barrel+Disk    | ?                                                                                                                      | 7                                                                                                                                |                            |                                                                      |                              |                            |           |                         |           |           |           |           |           |            |                    |                                            |
| 5   | bTOF, eTOF (ac-lgad)  | Barrel/Forward | Bias voltage determination<br>ASIC baseline, noise, threshold<br>Clock sync<br>Time walk calibration                   | Gain calibration<br>TDC bin width determination<br>Clock offset calibration<br>Hit position dependency (intrinsic and<br>c-bv-c) | QA                         | High p tracks                                                        | Tracking,<br>pfRICH          | Data Acc.<br>Dependen Depe | anden Pr  | rocessin( F             | rocessing |           |           |           |           |            |                    |                                            |
| 5   | Central Detector Trac | ker Alignment  | Initial alignment                                                                                                      | Alignment Check/Update (if needed)                                                                                               | QA                         | Production data                                                      |                              | Processing                 |           |                         |           | -         |           |           |           |            |                    |                                            |
| ,   | pfRICH                | Backward       | Thresholds (noise dependent).<br>dynamic range adjustments,<br>timing offsets,<br>synchronization<br>Initial alignment | Alignment Check/Update (if needed)<br>Time dependencies (Aerogel<br>transparency, mirror reflectivity, Gas<br>pressure)          | 2                          | Prodcution data                                                      |                              | Data Acc. Proc             | essing    |                         |           |           |           |           |           |            |                    |                                            |
| 4   | DIRC                  | Barrel         | Laser data?                                                                                                            | ?                                                                                                                                | ?                          |                                                                      |                              |                            |           |                         |           |           |           |           |           |            |                    |                                            |
|     | dRICH                 | Forward        | Bunch timing offset scan<br>Threshold scan<br>Noise masking                                                            | Track based alignment                                                                                                            | 2                          | High p tracks<br>~1hr of of production<br>data?                      | Tracking                     | Data Acc.<br>Dependen Proc | essin: Pr | rocessing               |           |           |           |           |           |            |                    |                                            |
| 0   | ЬЕМС                  | Backward       | Cosmic and LED for the initial gain balancing                                                                          | DIS Electron<br>Pi0->gg events energy scale                                                                                      | QA                         | DIS electron<br>Pi0 di-photon resonance<br>~1 day of production data | Tracking                     | Data Acc.<br>Dependen Data | Acc. Pr   | rocessin <sub>(</sub> F | rocessing |           |           |           |           | LED        |                    |                                            |
| 1   | AstroPix              | Barrel         |                                                                                                                        |                                                                                                                                  |                            |                                                                      |                              |                            |           |                         |           |           |           |           |           |            |                    |                                            |
| 2   | ScifiPb               | Barrel         |                                                                                                                        | SIPM gain                                                                                                                        |                            | ?                                                                    |                              |                            |           |                         |           |           |           |           |           |            |                    |                                            |
| 3   | fEMC                  | Forward        | IV Scan                                                                                                                | Pi0, eta->gg events energy scale                                                                                                 | 04                         | Pi0 di-photon resonance                                              |                              | Data Acc. Data             | Acc. Pr   | rocessin <sub>(</sub> F | rocessing | Processin |           |           |           | LED        |                    | High energy clu                            |
| 5   | ынсал                 | Backward       | I FD                                                                                                                   | 2                                                                                                                                | - Con                      | Toby of production data                                              |                              |                            |           |                         |           | Toresand  | ,         |           |           |            |                    | mon-meanly                                 |
|     | HCAL                  | Daural         | MIP calibration                                                                                                        |                                                                                                                                  |                            |                                                                      |                              |                            |           |                         |           |           |           |           |           |            |                    |                                            |
| -   | DICAL                 | Garrer         | Gain calibration                                                                                                       | (See hadronic e-scale calib)                                                                                                     |                            |                                                                      |                              |                            |           |                         |           |           |           |           |           |            |                    |                                            |
| -   | INCAL                 | Forwaru        |                                                                                                                        |                                                                                                                                  |                            |                                                                      |                              |                            |           |                         |           |           |           |           |           |            |                    |                                            |
| 9   | Hadronic energy scal  | e calibration  |                                                                                                                        | Set full calo stack energy scale for                                                                                             |                            | High energy hadronic                                                 | Tracking                     | Data Acc. Data             | Acc. Da   | ata Acc.                |           |           |           |           |           |            |                    | Final energy sca                           |
|     | Law O2 Tanana         | Far Bashura    | Aller mant?                                                                                                            | nauroinc snower and jets                                                                                                         | 1                          | showers and jets                                                     | 11-110                       | Dependen Depe              | mden De   | aheugey 3               |           | r         | ,         | ,         | 1         | _          | -                  | cambration (if ne                          |
| 10  | low G2 Tagger         | Far Backward   | Augument                                                                                                               |                                                                                                                                  |                            |                                                                      |                              |                            |           |                         |           |           |           |           |           |            |                    |                                            |
|     | low QZ Tagger (CAL)   | Far Backward   |                                                                                                                        |                                                                                                                                  |                            |                                                                      |                              |                            |           |                         |           |           |           |           |           |            |                    |                                            |
| é a | Pan Spec Tracker      | Far Backward   |                                                                                                                        |                                                                                                                                  |                            |                                                                      |                              |                            |           |                         |           |           |           |           |           |            |                    |                                            |
| 2   | Par spec Cal          | Far Backward   |                                                                                                                        |                                                                                                                                  |                            |                                                                      |                              |                            |           |                         |           |           |           |           |           |            |                    |                                            |
| -   | Direct Photon Cal     | Far Backward   |                                                                                                                        |                                                                                                                                  |                            | 100                                                                  |                              |                            |           |                         |           |           |           |           |           |            |                    |                                            |
| -   | Bu Tracking           | Far Forward    | Survey alignment/Cosmic                                                                                                | Alignment cneck                                                                                                                  |                            | MIP                                                                  |                              | Processing                 |           |                         |           |           |           |           |           |            |                    |                                            |
| 0   | BUPDWO4               | FarForward     | Survey alignment/Cosmic                                                                                                | SIPM gain                                                                                                                        |                            | MIP/Gamma/Electrons                                                  |                              | Processing                 |           |                         |           |           |           |           |           | LED        |                    |                                            |
| 7   | Roman (Pots)          | Far Forward    |                                                                                                                        |                                                                                                                                  |                            |                                                                      | Acc. BPM<br>Potential use of | Data Acc<br>Dependen Proc  | essing    |                         |           |           |           |           |           |            |                    |                                            |
| 8   | Off Momentum          | Far Forward    | Low lumi running                                                                                                       | correction monitors/fill by fill                                                                                                 |                            | RP                                                                   | central detector             | Data Acc.<br>Dependen Proc | essing    |                         |           |           |           |           |           |            |                    |                                            |
| 9   | ZDC PbW04             | Far Forward    | Survey alignment, timing delay                                                                                         | SiPM/APD gain, timing                                                                                                            | QA                         | Photon                                                               |                              | Processing                 |           |                         |           |           |           |           |           | LED        |                    |                                            |
| 0   | ZDC Sampling          | Far Forward    | Survey alignment timing delay                                                                                          | SIPM gain                                                                                                                        | OA.                        | Single neutron                                                       |                              | Processing                 |           |                         |           |           |           |           |           | LED        |                    |                                            |



#### Working document for calibration workflow

#### ePIC streaming computing: online to offline



## **Echelon 0 computing at streaming readout DAQ**

- Readout routing, time frame building [see Discussion 1]
- Primary function: data reduction
  - Traditional DAQ: triggering was the main method of data reduction, assisted by high level triggering/reconstruction, compression
  - Streaming DAQ need to reduce data computationally: zero-suppression, feature building, lossless/lossy compression
- Challenge: any information loss is permanent; observe full DAQ rate with less than O(1min) of latency
  - Reliable data reduction methods; Sized to peak data rate + contingency; More expensive (than offline) to develop and maintain
  - $\circ \rightarrow$  Application, only if needed; three subsystem need identified below
- Other critical roles:
  - Slow control; Monitoring (in coordination with monitoring via prompt reconstruction); Meta data collection, database service

| Detector        |       |         | Channels |      |       | RDO  | Fiber | DAM | Data  | Data                          | 3 subsystem data reduction need                    |
|-----------------|-------|---------|----------|------|-------|------|-------|-----|-------|-------------------------------|----------------------------------------------------|
| Group           | MAPS  | AC-LGAD | SiPM/PMT | MPGD | HRPPD |      |       |     |       | Volume<br>(To Tape)<br>(Gb/s) | beyond FEB/RDO zero-suppression                    |
| Tracking (MAPS) | 36B   |         |          |      |       | 400  | 800   | 17  | 26    | 26                            |                                                    |
| Tracking (MPGD) |       |         |          | 202k |       | 118  | 236   | 5   | 1     | 1                             |                                                    |
| Calorimeters    | 500M  |         | 104k     |      |       | 451  | 1132  | 19  | 502   | 28                            | Calorimeter cluster building (CPU/GPU?)            |
| Far Forward     | 300M  | 2.6M    | 170k     |      |       | 178  | 492   | 8   | 15    | 8                             |                                                    |
| Far Backward    | 82M   |         | 2k       |      |       | 50   | 100   | 4   | 150   | 1                             | FB high-rate tracker: Tracklet building (CPU/GPU?) |
| PID (TOF)       |       | 7.8M    |          |      |       | 500  | 1500  | 17  | 31    | 1                             |                                                    |
| PID Cherenkov   |       |         | 320k     |      | 140k  | 1283 | 2566  | 30  | 1275  | 32                            | dRICH: Collision throttling (2 tier DAM FPGA)      |
| TOTAL           | 36.9B | 10.4M   | 596k     | 202k | 140k  | 2980 | 6826  | 100 | 2,000 | 96                            | V                                                  |

#### EPIC Detector Scale and Technology Summary:

| Detector System                                                                                                                                                                                     | Channels                                                                                                           | RDO                                         | Gb/s (RDO)       | Gb/s (Tape)       | DAM Boards   | Readout Technology                                                                                                                       | Notes                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------|-------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Si Tracking: 3 vertex layers,<br>2 sagitta layers,<br>5 backward disks,<br>5 forward disks                                                                                                          | 7 m^2<br>36B pixels<br>5,200 MAPS sensors                                                                          | 400                                         | 26               | 26                | 17           | MAPS:<br>Several flavors:<br>curved its-3 sensors for vertex<br>Its-2 staves / w improvements                                            | Fiber count limited by Artix Transceivers                                                                                                                                                                                                                                                             |
| MPGD tracking: Electron Endcap<br>Hadron Endcap<br>Inner Barrel<br>Outer Barrel                                                                                                                     | 16k<br>16k<br>30k<br>140k                                                                                          | 8<br>8<br>30<br>72                          | 1                | .2                | 5            | uRWELL / SALSA<br>uRWELL / SALSA<br>MicroMegas / SALSA<br>uRWELL / SALSA                                                                 | 64 Channels/Salsa, up to 8 Salsa / FEB&RDO<br>256 ch/FEB for MM<br>512 ch/FEB for uRWELL                                                                                                                                                                                                              |
| Forward Calorimeters:<br>Forward Calorimeters:<br>Barrel Calorimeters:<br>Backward Calorimeters:<br>LFHCAL<br>HCAL<br>ECAL W/SciFi<br>HCAL<br>ECAL SciFi/PB<br>ECAL ASTROPIX<br>NHCAL<br>ECAL (PWO) | 63,280<br>8k<br>16,000<br>7680<br>5,760<br>500M pixels<br>3,256<br>2852                                            | 74<br>9<br>64<br>9<br>32<br>230<br>18<br>12 | 502              | 28                | 19           | SiPM / HG2CROC<br>SiPM / HG2CROC<br>SiPM / Discrete<br>SiPM / HG2CROC<br>SiPM / HG2CROC<br>Astropix<br>SiPM / HG2CROC<br>SiPM / Discrete | Assume HGCROC 56 ch * 16 ASIC/RDO = 896 ch/RDO<br>32 ch/FEB, 16 FEB/RDO estimate, 8 FEB/RDO conserve.<br>HCAL 1536x5<br>*HCAL insert not in baseline<br>Assume similar structure to its-2 but with sensors with<br>250k pixels for RDO calculation.<br>24 ch/feb, 8 RDO estimate, 23 RDO conservative |
| Far Forward: B0: 3 MAPS layers<br>1 or 2 AC-LGAD layer<br>2 Roman Pots<br>2 Off Momentum<br>ZDC: Crystal Calorimeter<br>32 Silicon pad layer<br>4 silicon pixel layers<br>2 boxes scintillator      | 300M pixel<br>1M<br>1M (4 x 135k layers x 2 dets)<br>640k (4 x 80k layers x 2 dets)<br>400<br>11,520<br>160k<br>72 | 10<br>30<br>64<br>42<br>10<br>10<br>10<br>2 | 15               | 8                 | 8            | MAPS<br>AC-LGAG / EICROC<br>AC-LGAD / EICROC<br>AC-LGAD / EICROC<br>APD<br>HGCROC as per ALICE FoCal-E                                   | 3x20cmx20cm<br>600^cm layers (1 or 2 layers)<br>13 x 26cm layers<br>9.6 x 22.4cm layers<br>There are alternatives for AC-LGAD using MAPS and low<br>channel count DC-LGAD timing layers                                                                                                               |
| Far Backward: Low Q Tagger 1<br>Low Q Tagger 2<br>Low Q Tagger 1+2 Cal<br>2 x Lumi PS Calorimeter<br>Lumi PS tracker                                                                                | 1.3M pixels<br>480k pixels<br>700<br>1425/75<br>80M pixels                                                         | 12<br>12<br>1<br>1<br>24                    | 150              | 1                 | 4            | Timepix4<br>Timepix4<br>(SiPM/HG2CROC) / (PMT/FLASH)<br>Timepix4                                                                         |                                                                                                                                                                                                                                                                                                       |
| PID-TOF: Barrel<br>Endcap                                                                                                                                                                           | 2.2M<br>5.6 M                                                                                                      | 288<br>212                                  | 31               | 1                 | 17           | AC-LGAD / EICROC (strip)<br>AC-LGAD / EICROC (pixel)                                                                                     | bTOF 128 ch/ASIC, 64 ASIC/RDO<br>eTOF 1024 pixel/ASIC, 24-48 ASIC/RDO (41 ave)                                                                                                                                                                                                                        |
| PID-Cherenkov: dRICH<br>pfRICH<br>DIRC                                                                                                                                                              | 317,952<br>69,632<br>69,632                                                                                        | 1242<br>17<br>24                            | 1240<br>24<br>11 | 13.5<br>12.5<br>6 | 28<br>1<br>1 | SiPM / ALCOR<br>HRPPD / EICROC (strip or pixel)<br>HRPPD / EICROC (strip or pixel)                                                       | Worse case after radiation. Includes 30% timing window. Requires further data volume reduction software trigger                                                                                                                                                                                       |

#### By Jeff Landgraf, presented on Aug 22 WG meeting [link], Updated Sept 19

| Detector<br>Group | MAPS  | AC-LGAD | Channels<br>SiPM/PMT | MPGD | HRPPD | RDO  | Fiber | DAM | Data<br>Volume<br>(RDO)<br>(Gb/s) | Data<br>Volume<br>(To Tape)<br>(Gb/s) |
|-------------------|-------|---------|----------------------|------|-------|------|-------|-----|-----------------------------------|---------------------------------------|
| Tracking (MAPS)   | 36B   |         |                      |      |       | 400  | 800   | 17  | 26                                | 26                                    |
| Tracking (MPGD)   |       |         |                      | 202k |       | 118  | 236   | 5   | 1                                 | 1                                     |
| Calorimeters      | 500M  |         | 104k                 |      |       | 451  | 1132  | 19  | 502                               | 28                                    |
| Far Forward       | 300M  | 2.6M    | 170k                 |      |       | 178  | 492   | 8   | 15                                | 8                                     |
| Far Backward      | 82M   |         | 2k                   |      |       | 50   | 100   | 4   | 150                               | 1                                     |
| PID (TOF)         |       | 7.8M    |                      |      |       | 500  | 1500  | 17  | 31                                | 1                                     |
| PID Cherenkov     |       |         | 320k                 |      | 140k  | 1283 | 2566  | 30  | 1275                              | 32                                    |
| TOTAL             | 36.9B | 10.4M   | 596k                 | 202k | 140k  | 2980 | 6826  | 100 | 2,000                             | 96                                    |

Summary of Channel Counts





Jin Huang <jhuang@bnl.gov>

#### **Streaming DAQ – Computing : consideration 1**

#### For kickstart the discussion, please interrupt to discuss at any moment

- Streaming DAQ naturally leads to no clear separation of streaming DAQ and computing
  - Streaming DAQ relies on data reduction computationally (i.e. no real-time triggering) → Any data reduction in streaming DAQ is a computing job
  - Which could be done at ASIC, FPGA, online-computers
  - Example could be zero-suppression (simple or sophisticated), feature extraction (e.g. amplitude in calo and tracklet in FB tracker)
  - Require minimal loss of collision signal; any data reduction require stringent bias control/study
- <u>Citing ePIC software principles https://eic.github.io/activities/principles.html</u>: We will have an unprecedented compute-detector integration:
  - We will have a common software stack for online and offline software, including the processing of streamed data and its time-ordered structure.
  - We aim for autonomous alignment and calibration.
  - We aim for a rapid, near-real-time turnaround of the raw data to online and offline productions.



#### **Streaming DAQ – Computing : consideration 2**

For kickstart the discussion, please interrupt to discuss at any moment

- Sooner or later, a copy of data is stored and saved for permanent storage
- This stage of first permanent storage could be viewed as a DAQ computing boundary



#### **Streaming DAQ – Computing : consideration 2**

#### For kickstart the discussion, please interrupt to discuss at any moment

- Paid by project
- Has a hard archival limit (O(100Gbps)) from both throughput and tape cost
- Main goal on "online-computing" is data reduction to fit output pipeline
- Stringent quality and bias control for any lossydata reduction
- As minimal reduction as affordable to
  - (1) reduce unrecoverable systematic uncertainty
  - (2) reduce complexity, cost, failure modes.
  - Any processing beyond minimal need a physics motivation to justify project cost/schedule reviews (and possible descope reviews)
- High availability: any down time cost \$O(0.1)M/day → usually on host lab

- Driven by collaboration, operation fund
- We would like to complete within a small latency (<O(1)week)</li>
  - Usually driven by calibration and debugs
- Main goal on "offline-computing" is to bring out physics objects for analysis
- Quality control for reconstruction
- Can afford to redo reconstruction if new algorithm or with new physics insights (at cost of time, effort and computing)
- Can wait for short interruptions and can be distributed

#### Before permanent archival: DAQ

#### After permanent archival: Computing

# Why streaming DAQ/computing?

|                                 | EIC                                               | RHIC                                              | LHC → HL-LHC                                                     |
|---------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------|
| Collision species               | $\vec{e} + \vec{p}, \vec{e} + A$                  | $\vec{p} + \vec{p}/A$ , $A + A$                   | p + p/A, $A + A$                                                 |
| Top x-N C.M. energy             | 140 GeV                                           | 510 GeV                                           | 13 TeV                                                           |
| Bunch spacing                   | 10 ns                                             | 100 ns                                            | 25 ns                                                            |
| Peak x-N luminosity             | 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 10 <sup>32</sup> cm <sup>-2</sup> s <sup>-1</sup> | $10^{34} \rightarrow 10^{35}  \mathrm{cm}^{-2}  \mathrm{s}^{-1}$ |
| x-N cross section               | 50 μb                                             | 40 mb                                             | 80 mb                                                            |
| Top collision rate              | 500 kHz                                           | 10 MHz                                            | 1-6 GHz                                                          |
| dN <sub>ch</sub> /dŋ in p+p/e+p | 0.1-Few                                           | ~3                                                | ~6                                                               |
| Charged particle rate           | 4M N <sub>ch</sub> /s                             | 60M <i>N</i> <sub>ch</sub> /s                     | 30G+ <i>N</i> <sub>ch</sub> /s                                   |

- Events are precious and have diverse topology  $\rightarrow$  hard to trigger on all process
- Signal data rate is moderate → possible to streaming recording all collision signal, event selection in offline
   reconstruction using all detector information after calibration

Bickground and systematic control is crucial  $\rightarrow$  avoiding a trigger bias; reliable data reduction