## Update on EIC 2<sup>nd</sup> Detector Study – Far-Forward Focus

Jihee Kim (jkim11@bnl.gov)

2024/05/09



## **EIC 2<sup>nd</sup> Detector Motivation**



- o EIC Design
  - Two interaction points (IP-6 and IP-8)
  - Two interaction regions (IR-6 and IR-8)
- Detector 1, called ePIC, locates at IP-6
- Favors to accommodate the second detector and a second interaction region
- A general-purpose collider detector to support full EIC program (complementarity)
  - Cross-checks & control of systematics
  - Subdetector technologies
  - o Magnetic field
  - Broaden physics program (different physics focuses)

## **EIC Interaction Regions**

Requires specialized detectors integrated in the interaction region over 80 m



## IR Concept – 2<sup>nd</sup> Focus in Far-Forward

- By adding additional magnet to focus beam
  ~ 45 m downstream from interaction point
- This is NOT detector design, but it is machine design that detector can be benefit from
- $\circ$  2<sup>nd</sup> focus enables
  - Higher probability to detect low p<sub>T</sub> (< 250 MeV) particles</li>
  - Detects near-beam particles where get out beam envelop
- Complementary to ePIC: exclusive, tagging, and diffractive physics analysis





## Physics Opportunities with 2<sup>nd</sup> Focus

- o 2<sup>nd</sup> focus in IR8 greatly improves forward acceptance
- Complementarity with Detector 1 (ePIC) @ IR-6
- Excellent low-p<sub>T</sub> acceptance for protons and light nuclei from exclusive reactions at very low t
- o Detection of target fragments makes it possible
  - To veto breakup to study coherent process
  - To study final state when breakup occurs
- Coherent diffraction on heavy nuclei by vetoing breakups
- Rare isotopes detection and identification of heavy fragments



improvement in forward acceptance



## Physics Opportunities with 2<sup>nd</sup> Focus

- o 2<sup>nd</sup> focus in IR8 greatly improves forward acceptance
- Complementarity with Detector 1 (ePIC) @ IR-6
- Excellent low-p<sub>T</sub> acceptance for protons and light nuclei from exclusive reactions at very low t
- o Detection of target fragments makes it possible
  - To veto breakup to study coherent process
  - To study final state when breakup occurs
- Coherent diffraction on heavy nuclei by vetoing breakups
- Rare isotopes detection and identification of heavy fragments
- Today, show study on capabilities of separating coherent from incoherent diffractive events by tagging far-forward nuclear fragments



Order-of-magnitude improvement in forward acceptance



### **Far-Forward Detector – Layout**





#### **Far-Forward Detector – Acceptance** Roman Pot concept Roman Pot (@ 2<sup>nd</sup> focus) Zero Degree Calorimeter Accepted Events **Generated Events** ditPosCutRPSF2 10<sup>4</sup> 924768 140 140 1041 0.0006002 3.082 Std Dev y 3.363 RPSF2 Y position [mm] 120 120 $10^{3}$ [rad] 100 100 $\phi_{mc}$ [rad] φ<sup>mc</sup> 80 80 $10^{2}$ ZDC 60 60 40 40 10 20 20 ep DVCS 18×275 GeV<sup>2</sup> -20 2 8 10 6 8 10 Ω 6 Ω 2 4 1.02 1.04 1.06 1.08 ZDC $\theta_{mc}$ [mrad] $\theta_{mc}$ [mrad] RPSF2 X position [mm] $10\sigma$ cut Windows on pots depending on the ZDC < 5.5 mrad uniformly ~100 % Ο Ο beam optics (transverse beam size) Needs to evaluate beam pipe impact on neutrons Ο

$$\sigma_{x,y} = \sqrt{\epsilon_{x,y}\beta(z)_{x,y} + (D_{x,y}\frac{\Delta p}{p})^2}$$

**D** : Momentum dispersion at z=RPSF  $\frac{\Delta p}{p}$  : Momentum spread at z=0  $\odot$  RPSF: Roman Pot at Secondary Focus

where

 $\epsilon$  : Emittance at z=0

**β** : Beta function at z=RPSF



JIHEE KIM

## **Approach – Vetoing Efficiency**

- To understand impact of 2nd focus on suppression of incoherent contribution (background to coherent  $J/\psi$  production)
- Used **BeAGLE** v1.03.02 ePb 18×110 GeV<sup>2</sup>  $J/\psi$  production (1 < Q<sup>2</sup> < 10) Incoherent events  $ePb \rightarrow e' + J/\psi(ee/\mu\mu) + X$
- Applied  $10\sigma$  safe distance cut based on eAu @ IR-8 Roman Pot at 2<sup>nd</sup> focus
- Tagged events for nuclear breakups tagging purpose
  - ZDC Hcal: any registered RAW hits
  - RPSF: one layer (closet to 2nd focus) has registered RAW hits outside  $10\sigma$  safe distance
  - OMD: two layers (actual four layers as redundancy) have registered RAW hits
  - B0 Tracker: at least two out of four layers have registered RAW hits
  - B0 Ecal: energy of all hits greater than 100 MeV
  - ZDC Ecal: energy of all hits greater than 100 MeV



#### **Nuclear Breakups Distribution**

| Nuclear Breakups at Final State | Number of Events |
|---------------------------------|------------------|
| Only Neutrons                   | 7.86 %           |
| Only Protons                    | 0.0001 %         |
| Only Photons                    | 3.45 %           |
| Neutrons + Protons              | 3.18 %           |
| Neutrons + Photons              | 45.41 %          |
| Protons + Photons               | 1.85 %           |
| Neutrons + Protons + Photons    | 38.25 %          |

About **95 %** of events have **neutrons** 











JIHEE KIM

#### **Far-Forward Detector – Incoherent Veto**



At position of third diffractive minimum, rejection factor for incoherent event better than 400:1 must be achievable (0.0025 % inefficiency)



#### **Far-Forward Detector – Incoherent Veto**



At position of third diffractive minimum, rejection factor for incoherent event better than 400:1 must be achievable (0.0025 % inefficiency)

Brookhaven<sup>-</sup>

National Laboratory



ZDC hcal tagged (neutrons) RPSF tagged (protons, nuclear fragments) OMD tagged (charged particles) B0 tracker tagged (charged particles) B0 ecal tagged (photons) ZDC ecal tagged (photons)

Vetoing power > 10<sup>3</sup>

Found to be enough to suppress incoherent contribution at three minima Vetoing efficiency is > 99.99%

## Summary and Next Step

- To explore physics opportunities by taking full advantage of 2<sup>nd</sup> focus
  - Implemented IR-8 hadron beamline geometry and its field configuration
  - Implemented required far-forward detectors
- Using BeAGLE incoherent events, Evaluated vetoing power by tagging nuclear fragments using far-forward detectors
  - o Found to be enough to suppress incoherent contribution at three diffractive minima
  - $\circ$  Vetoing power reaches > 10<sup>3</sup>

Next steps

- Investigate beampipe impact on vetoing efficiency
- Further look into possible physics cases (at very low t) with far-forward 2<sup>nd</sup> focus by t reconstruction from scattered protons



# **Backup Slides**



## **Approach – Detector Acceptance**

#### • Far-Forward region

- Particles with  $\theta < \sim 37 \text{ mrad} (2.1^\circ)$
- Tag charged hadrons (protons) or neutral particles (neutrons, photons)
- IP8 has larger crossing angle (35 mrad) and secondary focus far downstream

#### **o** Single particle simulation

- **B0 Tracker + Calorimeter** for detecting protons and photons
  - Proton energy: 80 GeV <  $E_p$  < 120 GeV and 5 <  $\theta_{MC}$  < 20 mrad
- Off-Momentum Detector for detecting protons from nuclear breakup
  - Proton energy: 123.75 GeV (45%) <  $E_p$  < 151.25 GeV (55%) and **0** <  $\theta_{MC}$  < **5** mrad
- Zero Degree Calorimeter for detecting photons and neutrons
  - Neutron energy:  $E_n = 275 \text{ GeV} (*\theta_{MC} < 10 \text{ mrad})$
- o Roman Pot at Secondary Focus for detecting charged particles from nuclear breakup
  - Proton energy:  $E_p = 275$  GeV and  $0 < \theta_{MC} < 5$  mrad

#### **Zero Degree Calorimeter**



About 99.98 % events were accepted ( $\theta_{MC}$  upto 5 mrad)

### **Roman Pots at Secondary Focus**

Single Proton E = 275 GeV  $0 < \theta_{MC} < 5$  mrad



About 95.4 % events were accepted and observed losses at higher theta (polar angle) Clipping occurs in quadrupoles for protons

### **Clipping on Acceptance of Far-Forward**

Kindly Provided by Alex Jentsch using EicRoot Simulation Event Display

Reference from https://wiki.bnl.gov/eic-detector-2/images/8/86/IP8\_HSR\_lattice\_performance\_10\_13\_22\_v3.pdf





123.75 - 151.25 GeV Protons



DD4hep simulation event display was not successful...

J. KIM

### **Off Momentum Detectors**

Single Proton 123.75 GeV (45%) < E < 151.25 GeV (55%) 0 <  $\theta_{\rm MC}$  < 5 mrad



About 67.42 % events were accepted

Hadron lattice in simulation set to be 275 GeV proton and clipping occurs in quadrupoles for protons

#### **B0 Tracker**

Single Proton 80 GeV < E < 120 GeV 5 <  $\theta_{MC}$  < 20 mrad



About 88.94 (93.6) % events were accepted requiring four layers (more than two layers)

### **IP-8 Far-Forward Detectors**

Implemented in IP-6 detector configuration

- **B0 Spectrometer (Tracker + Calorimeter)** 
  - 4 tracker planes and 10 cm long crystal module
  - Placed at z = 0.06 m

#### • Off Momentum Detector (OMD)

- o 40 cm tall and 30 cm wide
- Placed at (x, z) = (0.723133 m, 25.9359 m) and (0.702435 m, 27.9363 m)

#### Zero Degree Calorimeter (ZDC)

- $_{\odot}$  2 meter-long and 60  $\times$  60 cm^{2}
- Placed at (x, z) = (1.3798 m, 35.4293 m front)

#### • Roman Pot at Secondary Focus (RPSF)

- o 14 cam tall and 26 cm wide
- Placed at (x, z) = (1.00603 m, 43.9339 m) and (1.03788 m, 45.4337 m)



#### pT Acceptance from EIC YR



From EIC YR p.564

**Figure 11.98:**  $p_T$  (top row) and polar angle (bottom row) acceptance for three different beam energy configurations: 18x275 GeV (left), 10x100 GeV (middle), and 5x41 GeV (right). The black data in each figure represent the MC information from MILOU, the red lines are the accepted particles in the Roman Pots, and the blue lines are particles accepted in the B0 sensors.



### DVCS 10 GeV on 100 GeV







#### **Diffractive Physics Program**



24

## **Diffractive Physics Program**

- Experimentally, measured spectra in vector meson production contain sum of coherent and incoherent processes
  - Low t coherent events dominate, but higher t incoherent events dominate
  - Measuring coherent events is very challenging  $\rightarrow$  tagging nuclear breakups and vetoing incoherent events instead
  - Tracking resolution ( $p_T$  in particular) allows to measure position of dip patterns





JIHEE KIM

#### IP-8 Beam Parameters and $10\sigma$ Cut

From EIC CDR table 3.5 and Randy's eAu study

© RPSF: Roman Pot at Secondary Focus

| eAu 18 GeV<br>on 110 GeV              | Momentum Dispersion<br>(D <sup>secondary focus</sup> ) | Emittance<br>X ( $\epsilon_x^*$ )<br>[mm] | Emittance<br>Y( $\epsilon_y^*$ )<br>[mm] | Beta function<br>X ( $\beta_x^{secondary focus}$ )<br>[mm] | Beta function<br>Y ( $\beta_y^{\text{secondary focus}}$ [mm] | Momentum spread $(\Delta p/p)^*$ |
|---------------------------------------|--------------------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|
| Old ep<br>18 on 275 GeV <sup>2</sup>  | 0.382                                                  | 43.2e-6                                   | 5.8e-6                                   | 2289.454596                                                | 4538.713168                                                  | 6.2e-4                           |
| New ep<br>18 on 275 GeV <sup>2</sup>  | 0.465446718                                            | 43.2e-6                                   | 5.8e-6                                   | 498.013008                                                 | 3392.376638                                                  | 6.2e-4                           |
| New eAu<br>18 on 110 GeV <sup>2</sup> | 0.467582853                                            | 43.2e-6                                   | 5.8e-6                                   | 565.292559                                                 | 1870.555797                                                  | 6.2e-4                           |

$$\sigma_{x,y} = \sqrt{\epsilon_{x,y}\beta(z)_{x,y} + (D_{x,y}\frac{\Delta p}{p})^2}$$

1σ calculation $1σ_x$  $1σ_y$ ep β @ IR-8 RPSF (Old)0.3148670.1629770ep β @ IR-8 RPSF (new)0.1466770.140271eAu β @ IR-8 RPSF (new)0.1562710.104160

where

 $\epsilon$  : Emittance at z=0

 $\beta$  : Beta function at z=RPSF

**D** : Momentum dispersion at z=RPSF

 $\frac{\Delta p}{p}$ : Momentum spread at z=0



#### **Nuclear Breakups Distribution**

#### BeAGLE v1.01.01

#### BeAGLE v1.03.02

| 1 1 1 2                    |         |
|----------------------------|---------|
| produced particle          | rate    |
| only neutron               | 7.66%   |
| only proton                | 0%      |
| only photon                | 3.25%   |
| neutron and proton         | 3.19~%  |
| neutron and photon         | 44.24~% |
| proton and photon          | 2.27~%  |
| neutron, proton and photon | 39.39~% |
|                            |         |

Phys Rev D 104 114030

TABLE II. Summary of particles produced in incoherent  $J/\psi$  production in BeAGLE.

| Nuclear Breakups at Final State | Number of Events |
|---------------------------------|------------------|
| Only Neutrons                   | 7.86 %           |
| Only Protons                    | 0.0001 %         |
| Only Photons                    | 3.45 %           |
| Neutrons + Protons              | 3.18 %           |
| Neutrons + Photons              | 45.41 %          |
| Protons + Photons               | 1.85 %           |
| Neutrons + Protons + Photons    | 38.25 %          |

#### About 95 % of events have neutrons



## t Distribution and Vetoing Efficiency



Vetoing efficiency is > 99.99% at all three minima



JIHEE KIM

| Vata Salaatiana                                                                            | Surviving Events            |                             |  |  |
|--------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|--|--|
| veto Selections                                                                            | ep β @ IR-8 RPSF            | eAu β @ IR-8 RPSF           |  |  |
| All events                                                                                 | 998,161                     | 997,820                     |  |  |
| Events with one scattered electron identified and $ \eta_{J/\psi}  < 4$ and $1 < Q^2 < 10$ | 732,707 (100.0 %)           | 732,455 (100 %)             |  |  |
| ZDC HCAL tagged                                                                            | 41,880 ( <b>5.71579 %</b> ) | 41,848 ( <b>5.71339 %</b> ) |  |  |
| + RPSF tagged                                                                              | 94 ( <b>0.0128291 %</b> )   | 71 ( <b>0.00969343 %</b> )  |  |  |
| + OMD tagged                                                                               | 93 (0.0126927 %)            | 71 (0.00969343 %)           |  |  |
| + B0 tracker tagged                                                                        | 51 (0.00696049 %)           | 30 (0.00409581 %)           |  |  |
| + B0 ecal tagged                                                                           | 27 (0.00368497 %)           | 17 (0.00232096 %)           |  |  |
| + ZDC ECAL tagged                                                                          | 15 ( <b>0.0020472 %</b> )   | 4 ( <b>0.000546109 %</b> )  |  |  |

With 10σ safe distance cut based on \*eAu β @ IP-8 RPSF (New)\* 4 of 997,820 events were NOT vetoed



Phys. Rev. D 104, 114030

- Veto.1: no activity other than  $e^-$  and  $J/\psi$  in the main detector ( $|\eta| < 4.0$  and  $p_T > 100 \text{ MeV}/c$ );
- Veto.2: Veto.1 and no neutron in ZDC;
- Veto.3: Veto.2 and no proton in RP;
- Veto.4: Veto.3 and no proton in OMDs;
- Veto.5: Veto.4 and no proton in B0;
- Veto.6: Veto.5 and no photon in B0;
- Veto.7: Veto.6 and no photon with E > 50 MeV in ZDC.

| Survived Event Ratio                         |                   |           |          |                 |
|----------------------------------------------|-------------------|-----------|----------|-----------------|
| Material                                     | Without beam pipe | Beryllium | Aluminum | Stainless Steel |
| Total events                                 | 100 %             | 100 %     | 100%     | 100%            |
| Veto.1                                       | 86.9%             | 86.9%     | 86.9%    | 86.9~%          |
| Veto.2                                       | 5.81%             | 9.73%     | 9.85%    | 17.2%           |
| Veto.3                                       | 5.81%             | 9.73~%    | 9.85%    | 17.2%           |
| Veto.4                                       | 5.09%             | 8.77%     | 8.89%    | 15.73%          |
| Veto.5                                       | 4.32%             | 6.22%     | 5.97%    | 10.18%          |
| Veto.6                                       | 2.29%             | 3.32%     | 3.18%    | 5.68%           |
| Veto.7 $(E_{\rm photon} > 50 \text{ MeV})$   | 1.06%             | 2.05%     | 2.46%    | 5.58%           |
| Veto.7 ( $E_{\rm photon} > 100 {\rm ~MeV}$ ) | -                 | 2.18%     | -        | -               |

TABLE III. Summary of the percentage of events surviving the different vetoing steps for incoherent events assuming no beam pipe and different beam pipe materials of beryllium, aluminum, and stainless steel.

| Vote Selections                                                                            | Surviving Events            |  |  |
|--------------------------------------------------------------------------------------------|-----------------------------|--|--|
|                                                                                            | eAu β @ IR-8 RPSF           |  |  |
| All events                                                                                 | 997,820                     |  |  |
| Events with one scattered electron identified and $ \eta_{J/\psi}  < 4$ and $1 < Q^2 < 10$ | 732,455 (100 %)             |  |  |
| ZDC HCAL tagged                                                                            | 41,848 ( <b>5.71339 %</b> ) |  |  |
| + RPSF tagged                                                                              | 71 ( <b>0.00969343</b> %)   |  |  |
| + OMD tagged                                                                               | 71 (0.00969343 %)           |  |  |
| + B0 tracker tagged                                                                        | 30 (0.00409581 %)           |  |  |
| + B0 ecal tagged                                                                           | 17 (0.00232096 %)           |  |  |
| + ZDC ECAL tagged                                                                          | 4 (0.000546109 %)           |  |  |
|                                                                                            |                             |  |  |









Remaining events have high mass nuclear remnants (A = 208 and 207 for Pb) and low particle multiplicity



JIHEE KIM