Exclusive, Diffraction, & Tagging Meeting

Update on VM production in eA

20 May 2024

Zvi Citron¹, Eden Mautner¹, <u>Michael Pitt</u>^{1,2}

¹Ben Gurion University of the Negev (Israel) ²The University of Kansas (USA)

Outline

- At Ben Gurion University, we aim to deliver several physics case studies for the upcoming TDR. The following will be discussed today:
 - > Coherent production of J/ψ
 - Soft photons
 - t-reconstruction and Low-Q2 event selection
- Next time, we will focus on the following topics:
 - > Ion tagging in RP, photon-photon interactions, t-reconstruction

Introduction

Goals

- Probing the low-X structure of the nucleus
- Probing spatial parton structure of nuclei

Methodology

- Measuring coherent vector meson (VM) production
- Differential cross-section $(d\sigma/dt)$ as a function of momentum transfer \rightarrow spatial distributions of gluons

Event Kinematics

- Reconstruction of parameters of interest:
 - e incoming electron (determined by beam parameters)
 - e' outgoing electron (measured)
 - *VM* vector meson (measured)
- Energy scale Q2 = -(e e').M2()
- Momentum transfer -t = (VM (e e')).M2()

Challenges

- Rejection of incoherent events
- Reconstruction of t parameter

Introduction

Simulation updates (crucial for vetoing program)

- New FF design (merged by Alex since Apr 4 <u>PR-</u>
 <u>665</u>), adding vacuum inside the hadron beampipe
- Extending the vacuum for z>40 (<u>RP-720</u>), to be merged soon...

Coherent production

Signal simulation

eStarlight: https://github.com/michael-pitt/estarlight/tree/FixIonPDG

- W_MAX = -1 #Max value of w from HERA
- W_MIN = -1 #Min value of w from HERA
- W_N_BINS = 50 #Bins i w
- W_GP_MAX = -1 #Max value of W_gp
- W_GP_MIN = -1 #Min value of W_gp
- $EGA_N_BINS = 400$
- CUT_PT = 0 #Cut in pT? 0 = (no, 1 = yes)
- CUT_ETA = 0 # Cut in Eta on VM decay products

PROD_MODE = 12 #narrow / wide switch (12 = coherent vector meson (narrow), 13 = coherent vector meson (wide)) N EVENTS = 4000

```
PROD_PID = 443011 # 443011 - Jpsi->ee , 443013 - Jpsi->mumu,
```

PYTHIA_FULL_EVENTRECORD = 1 # Write full pythia information to output (vertex, parents, daughter etc).

- QUANTUM_GLAUBER = 1 # Do a quantum Glauber calculation instead of a classical one
- $MIN_GAMMA_Q2 = 1.0$
- $MAX_GAMMA_Q2 = 10.0$
- SELECT_IMPULSE_VM = 0 # Impulse VM parameter

Execution time:

No ions in the record: 2.01 s/Event Standard: 183.20 s/Event PR720 (add more vacuum): 16.23 s/Event

$\sigma(Q^2 < 0.001)$	=	73.907 nb
$\sigma(0.001 < Q^2 < 0.03)$	=	25.496 nb
$\sigma(1 < Q^2 < 10)$	=	9.652 <i>nb</i>

Low Q2 region is discussed latter

Incoherent production

Background simulation

BeAGLE V1.03.02 (https://eic.github.io/software/beagle.html)

PROJPAR	R				ELECTR	RON
TARPAR	208	.0 82	.0			
TAUFOR	10.	0 25	.0 1.0	כ		
FERMI	2	0.62	1	0		
*	yMin	yMax	Q2Min	Q2Max	theta_N	Min theta_Max
L-TAG	0.01	0.95	1	10.0	0.0 6	5.29
* model	selectio	n (0=all <i>,</i>	1=rho,2	eomega,3	=phi,4=J	/psi)
PYVECTO	DRS 4	Ļ				
USERSET	- 15	9	.0			
MODEL					PYTHIA	ι.
* if PYTH	IIA mode	el specif	y pythia	input card	ls	
PY-INPU	Т				S3VJL0	03

Execution time:

Standard: 320 s/Event <u>PR720</u> (add more vacuum): 35 s/Event

Using t-Filter for t<0.2 Filter efficiency ε~40%

Analysis

Coherent event Selection

- 3 track events (in Barrel)
- J/psi mass window of 0.4 GeV (no PID)
- Veto activity in forward region (reco/hits):
 B0 tracks, B0 clusters, Hits in OMD / RP, Ecal and Hcal ZDC Clusters
- Signal efficiency for different lepton flavours:

Cut	electrons	Muons
3 tracks	0.973705	0.97383
VM mass cut	0.838785	0.898815
Veto FF Detectors	0.838745	0.898795

Incoherent rejection

ePIC Simulation 18x108 GeV² Modify the strategy of <u>2108.01694</u> (from object MC Entries Work in progress $BeAGLE \; ePb {\rightarrow} e{+} J/\psi{+} X$ rejection to signal rejection) $1 < Q^2/GeV^2 < 10$ 10⁴ Work by Eden Mautner (in progress) el+mu Cut 10³ 3 tracks 0.914885 • Veto.1: no activity other than e^- and J/ψ in the main detector ($|\eta| < 4.0$ and $p_T > 100 \text{ MeV}/c)$; 0.827045 VM mass cut • Veto.2: Veto.1 and no neutron in ZDC; Background 10^{2} • Veto.3: Veto.2 and no proton in RP; Veto BO 0.429656 efficiency • Veto.4: Veto.3 and no proton in OMDs; based on ePIC **FFD** simulation 0.29286 • Veto.5: Veto.4 and no proton in B0; Veto OMD • Veto.6: Veto.5 and no photon in B0; Veto RP θ 10⊨ • Veto.7: Veto.6 and no photon with E > 50 MeV in Total ZDC. 0.013776 Veto ZDC 3 tracks Veto B0 Veto OMD Veto ZDC RomanPots response is investigated... 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.2 Generated |-t| GeV² (See backup slide #22)

20 May 2024

• Following the full event selection, the veto program has strong discrimination

• Following the full event selection, the veto program has strong discrimination

• Following the full event selection, the veto program has strong discrimination

Signal purity

• Remaining backgrounds are mostly events with deexcited Pb ions:

- It is not clear which kinematics such processes have
- We develop a dedicated analysis strategy to study these events

• Rather small photon multiplicity in BeAGLE, do we miss any other processes that contributes production of photons in association with vector mesons?

• Most of the "background" events are quasi-coherent events

• Most of the "background" events are quasi-coherent events

Good efficiency for those photons

- Photon reconstruction in ion rest frame:
 - Reconstruction of photon 4-momentum \rightarrow boost to the ion rest frame
 - Past studies showed B0/ZDC position resolution was sufficient
 - Currently EICRecon clustering algorithm in B0/ZDC has issues (see backup)
 - > Once solved, we can check the energy resolution of soft photons

t-reconstruction

Analysis:

Another challenge in the analysis is to reconstruct the momentum transfer

- *e* incoming electron (**determined by beam parameters**)
- e' outgoing electron (measured) VM – vector meson (measured) Momentum transfer –t =(VM –(e–e')).M2()

Using method L to reconstruct the momentum transfer:

 Already after the AfterBurner and truth inputs, we see small bias – Assumption that A=(0,0,PZ) is not correct

Q2 and electron scattering

The phase-space can be further divided to two regions Acceptance of low-Q taggers

and Acceptance in central detector (main analysis)

20 May 2024

Q2 and electron scattering

• The low Q2 tagger phasespace is further divided into two regions:

> 0.001 < Q2 < 0.03 low(Q2) < -3

Low-Q2 tagger performance:

- Electrons with log(Q2) < -3 cannot be distinguished
- At the design lumi, hundreds of brem. electrons produced every bunch crossing
- Using the TaggerTrackerTrackParameters branch of the EICRecon output

Afterburner

Analysis

Coherent event Selection

- 3 track events (with 2 tracks in $|\eta| < 4$)
- J/psi mass window of 0.4 GeV (no PID)
- Veto activity in forward region (reco/hits):
 B0 tracks, B0 clusters, Hits in OMD / RP, Ecal and Hcal ZDC Clusters

Signal efficiency for different Q² regions:

	electrons			Muons		
Cut	Q ² <0.001	0.001 <q<sup>2<0.03</q<sup>	1 <q<sup>2 < 10</q<sup>	Q ² <0.001	0.001 <q<sup>2<0.03</q<sup>	1 <q<sup>2 < 10</q<sup>
3 tracks	0.565585	0.338035	0.973705	0.566175	0.337	0.97383
VM mass cut	0.495305	0.29898	0.838785	0.52959	0.317285	0.898815
Veto FFD	0.495305	0.29897	0.838745	0.52959	0.31727	0.898795

20 May 2024

Analysis

Event categorization

- Depends on the electron reconstructed eta (Barrel) or Q2 (Taggers)
 - Central detector: 9.6 nb x 0.9 ~ 8.6 nb
 - Low-Q2 taggers: 25 nb x 0.3 ~ 7.5 nb

Adding low-Q2 category double statistics

Reducing uncertainty from outgoing electron

- Tagging Very-Q2 region: need to estimate backgrounds
- Incoherent background has ~ similar rejection as for the $_{20}$ high Q2 events

Summary and discussion

- Simulation:
 - Development of detector geometry is frozen unless an unexpected developments we will proceed with the current setup
 - Some issues with RP response (investigating)
- Coherent VM selection and background veto plots for future TDR
- Semi-coherent events (work in progress) estimation of beam backgrounds
 <u>https://github.com/eic/ProtonBeamGas</u>, is ongoing, Clustering of B0 / ZDC has issues,
 once fixed we proceed to show the resolution plots
- The lowQ2 taggers are not in the EICRecon https://github.com/eic/EICrecon/pull/675, inclusion of low-Q2 region is considered
- t reconstruction Afterburner bias is investigated, once done, we aim to apply ML to reconstruct t

- RP hit map at the end of the cut flow (only quasi-coherent events are selected)
- Both RP are shown (no RP_z cut is applied)
- Some additional interactions of ions???

Afterburner configuration

Using eic-shell and abconv -p 2 (https://github.com/eic/afterburner)

A ab afterburner is used 1 A ab_crossing_angle 0.025 A ab_hadron_beta_crab_hor500000 A ab_hadron_beta_star_hor910 A ab_hadron_beta_star_ver40 A ab_hadron_divergence_hor0.000218 A ab_hadron_divergence_ver0.000379 A ab_hadron_rms_bunch_length 70 A ab_hadron_rms_emittance_hor4.32e-05 A ab_hadron_rms_emittance_ver5.8e-06 A ab_lepton_beta_crab_hor150000 A ab_lepton_beta_star_hor1960 A ab_lepton_beta_star_ver410 A ab_lepton_divergence_hor0.000101 A ab_lepton_divergence_ver 3.7e-05 A ab_lepton_rms_bunch_length 9 A ab_lepton_rms_emittance_hor 2e-05 A ab_lepton_rms_emittance_ver6e-07 A ab use beam bunch sim1

Afterburner configuration

Compare vtx distribution stored in hepmc files used in the simulation before and after the afterburner

Vertex coordinates (x,y,z,t?) obtained from "E" line in the hepmc files (in mm)

20 May 2024

Afterburner configuration

Compare outgoing electron distribution before and after the afterburner

Introduction

Selected (past) studies

• Investigation of the background in coherent J/ ψ production at the EIC (2108.01694):

- Veto.1: no activity other than e^- and J/ψ in the main detector ($|\eta| < 4.0$ and $p_T > 100 \text{ MeV}/c$);
- Veto.2: Veto.1 and no neutron in ZDC;
- Veto.3: Veto.2 and no proton in RP;
- Veto.4: Veto.3 and no proton in OMDs;
- Veto.5: Veto.4 and no proton in B0;
- Veto.6: Veto.5 and no photon in B0;
- Veto.7: Veto.6 and no photon with E > 50 MeV in ZDC.

Strong background rejection with FFD at the EIC

BO detector performance (EICRecon)

Energy response for $\theta < 13$ mrad

- To study the entire detector's sensitive area beampipe was removed from the simulation.
- When photons interact before the B0ECAL energy response is not defined (fluctuations and bias)
- NOTE: light yields are not included yet (reco level)

ZDC detector performance (EICRecon)

Particle gun with photons

- Photons with θ <2mrad, endpoint>35m.
- Photon energy response from ECAL + HCAL

Similar saturation in ZDC ECAL for reconstructed clusters

The Far-Forward detectors

