

Possibilities for inclusive diffraction at the Electron Ion Collider

Anna Staśto
Penn State University

collaboration with Nestor Armesto, Paul Newman and Wojciech Słomiński

Outline

- Simulations of $F_{L}^{D(3)}$ for EIC
- Motivation: why is $F_{L}^{D(3)}$ interesting ?
- H1 measurement
- Proton tagging as a method for diffraction at EIC
- Pseudodata simulation, energy beam scenarios
- Extraction by linear fit. Kinematic range and precision
- $F_{L}^{D(3)}$ and $R^{D(3)}$ ratio of longitudinal to transverse cross section
- 4D diffractive cross section and Reggeon extraction at EIC
- EIC pseudodata for 4D diffractive cross section with t dependence
- Extraction of Pomeron and Reggeon partonic structure, estimate of uncertainties

Series of works on diffraction at ep/eA machines:
Inclusive diffraction in future electron-proton and electron-ion colliders e-Print: 1901.09076
Diffractive longitudinal structure function at Electron Ion Collider e-Print: 2112.06839
Extracting the partonic structure of colorless exchanges at Electron Ion Collider e-Print: to appear soon also EIC Yellow Report, Sec. 7.1.6, 8.5.7

Diffraction in DIS

- Diffractive characterized by the rapidity gap: no activity in part of the detector
- At HERA in electron-proton collisions: about 10% events diffractive
- Interpretation of diffraction : need colorless exchange

Questions:

- What is the nature of this exchange ? Partonic composition ?
- One, two, or more exchanges ? Pomeron \mathbb{P}, Reggeon \mathbb{R} ?
- Evolution ? Relation to saturation, higher twists ?
- Energy, momentum transfer dependence ?

Diffractive kinematics in DIS

Standard DIS variables:

electron-proton
cms energy squared:

$$
s=(l+P)^{2}
$$

photon-proton
cms energy squared:

$$
W^{2}=(q+P)^{2}
$$

$$
\begin{aligned}
& \text { inelasticity } \\
& \qquad y=\frac{P \cdot q}{P \cdot l}
\end{aligned}
$$

Bjorken x

$$
x=\frac{Q^{2}}{2 P \cdot q}=\frac{Q^{2}}{y s}=\frac{Q^{2}}{Q^{2}+W^{2}}
$$

(minus) photon virtuality

$$
Q^{2}=-q^{2}
$$

Diffractive DIS variables:

$$
x=\xi \beta
$$

$$
\begin{aligned}
& \xi=x_{I P}=\frac{x}{\beta}=\frac{Q^{2}+M_{X}^{2}-t}{Q^{2}+W^{2}} \\
& \beta=\frac{Q^{2}}{2\left(P-P^{\prime}\right) \cdot q}=\frac{Q^{2}}{Q^{2}+M_{X}^{2}-t} \\
& t=\left(P^{\prime}-P\right)^{2}
\end{aligned}
$$

momentum fraction of the
Pomeron w.r.t hadron
momentum fraction of parton w.r.t Pomeron

4-momentum transfer squared

Diffractive cross section, structure functions

Diffractive cross section depends on 4 variables $\left(\xi, \beta, Q^{2}, t\right)$:

$$
\begin{aligned}
& \frac{d^{4} \sigma^{D}}{d \xi d \beta d Q^{2} d t}=\frac{2 \pi \alpha_{\mathrm{em}}^{2}}{\beta Q^{4}} Y_{+} \sigma_{\mathrm{r}}^{\mathrm{D}(4)}\left(\xi, \beta, Q^{2}, t\right) \\
& \text { where } \quad Y_{+}=1+(1-y)^{2}
\end{aligned}
$$

Reduced cross section depends on two structure functions:

$$
\sigma_{\mathrm{r}}^{\mathrm{D}(4)}\left(\xi, \beta, Q^{2}, t\right)=F_{2}^{\mathrm{D}(4)}\left(\xi, \beta, Q^{2}, t\right)-\frac{y^{2}}{Y_{+}} F_{L}^{\mathrm{D}(4)}\left(\xi, \beta, Q^{2}, t\right)
$$

Upon integration over t :

$$
\begin{aligned}
& F_{2, L}^{\mathrm{D}(3)}\left(\xi, \beta, Q^{2}\right)=\int_{-\infty}^{0} d t F_{2, L}^{\mathrm{D}(4)}\left(\xi, \beta, Q^{2}, t\right) \\
& \sigma_{\mathrm{r}}^{\mathrm{D}(3)}\left(\xi, \beta, Q^{2}\right)=F_{2}^{\mathrm{D}(3)}\left(\xi, \beta, Q^{2}\right)-\frac{y^{2}}{Y_{+}} F_{L}^{\mathrm{D}(3)}\left(\xi, \beta, Q^{2}\right)
\end{aligned}
$$

When $y \ll 1$

$$
\sigma_{\mathrm{r}}^{\mathrm{D}(4,3)} \simeq F_{2}^{\mathrm{D}(4,3)}
$$

Dimensions:

$$
\begin{aligned}
& {\left[\sigma_{\mathrm{r}}^{\mathrm{D}(4)}\right]=\mathrm{GeV}^{-2}} \\
& \sigma_{\mathrm{r}}^{\mathrm{D}(3)} \quad \text { Dimensionless }
\end{aligned}
$$

Why $\mathrm{F}_{\mathrm{L}}{ }^{\mathrm{D}(3)}$ is interesting?

F_{L}^{D} vanishes in the parton model, similarly to inclusive case
Gets non-vanishing contributions in QCD
As in inclusive case, particularly sensitive to the diffractive gluon density
Expected large higher twists, provides test of the non-linear, saturation phenomena

Golec-Biernat, Łuszczak

Theoretical studies indicate important role of twist 4 contributions to F_{L}^{D}
F_{2}^{D} affected less by higher twists

$$
x_{I P} \equiv \xi=10^{-3}
$$

$\mathrm{F}_{\mathrm{L}}{ }^{\mathrm{D}(3)}$ at HERA

Measurement requires several beam energies

Experimentally challenging...

F_{L}^{D} strongest when $y \rightarrow 1$. Low electron energies

```
Eur. Phys. J. C (2011) 71:1836
DOI 10.1140/epjc/s 10052-011-1836-6
The European
Regular Article - Experimental Physics
```


Measurement of the diffractive longitudinal structure function F_{L}^{D} at HERA

PhYsical Journal C

1107.3420 [hep-ex]

```
H1 Collaboration
```

H1 measurement: 4 energies, $\mathrm{E}_{\mathrm{p}}=920,820,575,460 \mathrm{GeV}$, positron beam $\mathrm{E}_{\mathrm{e}}=27.6 \mathrm{GeV}$

E_{p} (GeV)	\sqrt{s} (GeV)	Q^{2} range $\left(\mathrm{GeV}^{2}\right)$	y range	Luminosity $\left(\mathrm{pb}^{-1}\right)$
460	225	$2.5<Q^{2}<100$	$0.1<y<0.9$	8.5
575	252	$2.5<Q^{2}<100$	$0.1<y<0.9$	5.2
920	319	$7.0<Q^{2}<100$	$0.1<y<0.56$	126.8
Q^{2} range				
Data Set	Proton Energy E_{p}	Luminosity		
$3<Q^{2}<13.5 \mathrm{GeV}^{2}$		1997 MB	820 GeV	$2.0 \mathrm{pb}^{-1}$
$13.5<Q^{2}<105 \mathrm{GeV}^{2}$	1997 all	820 GeV	$10.6 \mathrm{pb}^{-1}$	

$M_{Y}<1.6 \mathrm{GeV},|t|<1.0 \mathrm{GeV}^{2}$
Large errors, limited by statistics at HERA
Careful evaluation of systematics. Best precision 4\%, with uncorrelated sources as low as 2%

$F_{L^{(3)}}$ at HERA: extraction from linear fit

H1 analysis

$x_{I P} \sigma_{r}^{D}$ as a function of y^{2} / Y_{+}
Inner bars: statistical errors
Data show linear dependence
Linear fit (solid line), the slope gives F_{L}^{D}

$\mathrm{F}^{\mathrm{D}(3)}$ at HERA

$\mathbf{x}_{\text {IP }} F_{L}^{D}$

- H1 data
——H1 2006 DPDF Fit B
------ H1 2006 DPDF Fit A
-.-.-. Golec-Biernat \& Luszczak
$x_{I P} F_{2}^{D}$
- H 1 data
—— H1 2006 DPDF Fit B

H1 conclusions:

Measurements of σ_{r}^{D} consistent with predictions from the models

Extracted F_{L}^{D} has a tendency to be higher than the predictions, though compatible with model predictions within errors

Overall: $0<F_{L}^{D}<F_{2}^{D}$

Diffractive ratio $R^{D}=F_{L}{ }^{0} / F_{T}{ }^{0}$ at HERA

Ratio $R^{D}=F_{L}^{D} /\left(F_{2}^{D}-F_{L}^{D}\right)$ longitudinal to transverse
Ratio of ratios : diffractive R^{D} to inclusive R
H1 Collaboration

Data compatible with the theoretical predictions Transverse and longitudinal polarised cross sections are of the same order of magnitude for $Q^{2}=11.5 \mathrm{GeV}^{2}$
Ratio of ratios R^{D} / R larger than 1 , average value 2.8.
R^{D} / R data indicate than longitudinally polarised cross section plays a larger role in the diffractive case than in inclusive case

Phase space (x, \mathbf{Q}^{2}) EIC-HERA

EIC can operate at various energy combinations

Can cover wide range of x
Large instantaneous luminosity
Statistics should not be a limiting factor

EIC 3 scenarios - HERA

Measurement methods: LRG vs LP

Large Rapidity Gap method: request a large rapidity gap (ex. ZEUS 2009 $\xi<0.02$)

ZEUS

Proton Tagging (Leading Proton) method: detection of a leading proton (ex. Leading Proton Spectrometer in ZEUS, Forward Proton Spectrometer in H 1 , can go to higher $\xi<0.1$)

ZEUS

Rapidity range at EIC in diffraction

Rapidity range of proton and undecayed diffractive system X
$p_{T}^{\text {proton }}<4 \mathrm{GeV}$
$0.1<\beta<0.9$
$0.005<y<0.96$
HERA: LRG method reliable for gaps >3 units of rapidity

EIC: fairly large gaps ($\Delta \eta \geq 4$) exist for smallest ξ and largest s

However, through most region LRG method may be challenging at EIC

Far forward detectors at EIC

Detector	Angle	Position [m]
ZDC	$\theta<5.5 \mathrm{mrad}$	37.5
Roman Pots	$0.5<\theta<5.0 \mathrm{mrad}$	$26.0,28.0$
Off-momentum detectors	$\theta<5.0 \mathrm{mrad}$	$22.5,25.5$
BO	$6.0<\theta<20.0 \mathrm{mrad}$	$5.4<\mathrm{z}<6.4$

Final proton tagging

Much better than at HERA

Best way to select diffractive events through proton tagging

$$
t=-\frac{p_{\perp}^{2}}{x_{L}}-\frac{\left(1-x_{L}\right)^{2}}{x_{L}} m_{p}^{2}
$$

Pseudodata generation: collinear factorization for diffraction

Use the collinear factorization for the description of HERA and pseudodata simulation

Collins

$$
F_{2 / L}^{D(4)}\left(\beta, \xi, Q^{2}, t\right)=\sum_{i} \int_{\beta}^{1} \frac{d z}{z} C_{2 / L, i}\left(\frac{\beta}{z}, Q^{2}\right) f_{i}^{\mathrm{D}}\left(z, \xi, Q^{2}, t\right)
$$

- Diffractive cross section can be factorized into the convolution of the perturbatively calculable partonic cross sections and diffractive parton distributions (DPDFs)
- Partonic cross sections are the same as in the inclusive DIS
- The DPDFs are non-perturbative objects, but evolved perturbatively with DGLAP

Pseudodata generation: model for diffractive structure functions

- Parametrization of the DPDFs as in H1 and ZEUS analysis
- Regge factorization assumed
- $\left(\beta(\right.$ or $\left.z), Q^{2}\right)$ dependence in parton distribution of diffractive exchange factorized from flux factors with (t, ξ) dependence
- Dominant term 'Pomeron', at low ξ
- At higher ξ additional exchanges 'Reggeons' need to be included

Regge type flux:

$$
f_{\mathbb{P}, \mathbb{R}}^{p}(\xi, t)=A_{\mathbb{P}, \mathbb{R}} \frac{e^{B_{\mathbb{P}, \mathbb{R}} t}}{\xi^{2 \alpha_{\mathbb{P}}, \mathbb{R}}(t)-1}
$$

$$
\alpha_{\mathbb{P}, \mathbb{R}}(t)=\alpha_{\mathbb{P}, \mathbb{R}}(0)+\alpha_{\mathbb{P}, \mathbb{R}}^{\prime} t
$$

For t-integrated case

$$
f_{i}^{\mathrm{D}(3)}\left(z, \xi, Q^{2}\right)=\phi_{\mathbb{P}}^{p}(\xi) f_{i}^{\mathbb{P}}\left(z, Q^{2}\right)+\phi_{\mathbb{R}}^{p}(\xi) f_{i}^{\mathbb{R}}\left(z, Q^{2}\right)
$$

Pomeron PDFs obtained via NLO DGLAP evolution starting at initial scale $\mu_{0}{ }^{2}=1.8 \mathrm{GeV}^{2}$

$$
z f_{i}\left(z, \mu_{0}^{2}\right)=A_{i} z^{B_{i}}(1-z)^{C_{i}} \quad i=q, g
$$

Reggeon PDFs taken from the GRV fits to the pion structure function (could also be determined at EIC!)

Pseudodata generation: energy choice

$$
\begin{aligned}
& \sigma_{\text {red }}^{\mathrm{D}(3)}=F_{2}^{\mathrm{D}(3)}\left(\beta, \xi, Q^{2}\right)-Y_{\mathrm{L}} F_{\mathrm{L}}^{\mathrm{D}(3)}\left(\beta, \xi, Q^{2}\right) \quad \text { Integrated over t-momentum transfer } \\
& Y_{\mathrm{L}}=\frac{y^{2}}{Y_{+}}=\frac{y^{2}}{1+(1-y)^{2}}
\end{aligned}
$$

Can disentangle $F_{2}^{D(3)}$ from $F_{L}^{D(3)}$ by varying energy and performing the linear fit in Y_{L}.
$y=\frac{Q^{2}}{x s}=\frac{Q^{2}}{\beta \xi s} \quad$ Need to vary the energy \sqrt{s} to change y for fixed $\left(\beta, \zeta, \mathrm{Q}^{2}\right)$

EIC energies for electron and proton:

		$E_{p}[\mathrm{GeV}]$					
		41	100	120	165	180	275
5	5	29	45	49	57	60	74
E	10	40	63	69	81	85	105
1	18	54	85	93	109	114	141

S-17 all 17 combinations
$E_{p}=41,100,120,165,180,275 \mathrm{GeV}$
S-9 9 - bold red
S-5 5 - green (EIC preferred)

Pseudodata generation

Binning and cuts

Uniform logarithmic binning, 4 bins per order of magnitude in each $\beta, \mathrm{Q}^{2}, \zeta$
Bins in (ξ, β, Q^{2}), common to at least four beam setups
$\mathrm{Q}^{2}>3 \mathrm{GeV}^{2}$ both H 1 and ZEUS fits indicate deterioration of fits for low Q^{2}
$0.96>y>0.005$ expected coverage of the experiment

Simulations

Cross section generation from ZEUS-SJ diffractive PDFs evolved with DGLAP
Assumed $\delta_{\text {sys }}=1-2 \%$, extrapolated from HERA 2% uncorrelated systematics; normalization/correlated systematics negligible effect on extraction of $\mathrm{F}_{\mathrm{L}} \mathrm{D}$
$\delta_{\text {stat }}$ from $10 \mathrm{fb}^{-1}$ integrated luminosity
Several random samples are generated

Kinematic range and number of points

Count of different beam energy combinations for S-17, S-9, S-5
Only points with more than 4 combinations are taken for F_{L} extraction (in H 1 analysis 3 points)
Set-17: 364, set-9: 285, set-5: 160 values of F_{L}

$\mathrm{F}_{\mathrm{L}}{ }^{\mathrm{D})}$ extraction

Uncorrelated systematics 1\%
Differences between S-17 and S-9, S-5 small
Increase in error bar on the extraction when smaller number of energy points
Largest errors for bins with shortest range of Y_{L}

Simulated measurement of $F_{L}{ }^{[(3)}$ vs β in bins of $\left(\xi, Q^{2}\right)$

Uncorr. systematic error $1 \%, 5 \mathrm{MC}$ samples to illustrate fluctuations

Small differences between S-17 and S-9, small reduction to range and increase in uncertainties. More pronounced reduction in range and higher uncertainties in S-5.

An extraction of F_{L}^{D} possible with EIC-favored set of energy combinations

Simulated measurement of $F_{L}{ }^{0(3)}$ vs β in bins of $\left(\xi, Q^{2}\right)$

S-17

$$
\delta_{\mathrm{sys}}=1 \%
$$

Change from 1% to 2% results in roughly twice large error bars
Statistical errors negligible

Simulated measurement of $\mathrm{FL}^{0(3)}$ vs β in bins of $\left(\xi, Q^{2}\right)$

$F_{l}{ }^{0(3)}$ fit accuracy

\qquad
F_{L} fit accuracy for $\delta_{\text {sys }}=1 \%$

Estimate the accuracy of extraction for $\mathrm{F}_{\mathrm{L}}{ }^{\mathrm{D}(3)}$
Generate several MC samples of pseudodata and perform fits

Use direct arithmetic averaging
average

$$
\bar{v}=\frac{S_{1}}{N}
$$

variance
$(\Delta v)^{2}=\frac{S_{2}-S_{1}^{2} / N}{N-1}$
$S_{n}=\sum_{i=1}^{N} v_{i}^{n}$
where v_{i} is the value of F_{L}^{D}
in Monte Carlo sample i

$\mathrm{R}^{\mathrm{D}}=\mathrm{F}_{\mathrm{L}} \mathrm{D} / \mathrm{F}_{\mathrm{T}}^{\mathrm{D}}$ ratio of longitudinal to transverse

Ratio of cross sections for longitudinally polarized to transverse polarized photons
$R^{D(3)}=F_{L}^{D(3)} / F_{T}^{D(3)}$
$F_{T}^{D(3)}=F_{2}^{D(3)}-F_{L}^{D(3)}$
$\sigma_{\text {red }}^{D(3)}=\left[1+\left(1-Y_{L}\right) R^{D(3)}\right] F_{T}^{D(3)}$
Different form of reduced cross section

Alternative fit has different sensitivities to the uncertainties

Systematics 1\%
Averaged over 10 MC samples: reduced fluctuations

Summary on FL^{D}

- $F_{L}^{D(3)}$ at EIC
- Important quantity, sensitive to diffractive gluon density (saturation, higher twists...). Only one extraction at HERA by H1, large errors. Challenging measurement.
- Three scenarios: 17, 9, 5 energy combinations. Pseudodata from DGLAP, assumed 1-2\% systematics, $10 \mathrm{fb}^{-1}$ integrated luminosity. Extraction via linear fit to reduced cross section
- Scenarios S-17 and S-9 do not differ much, S-5 reduced kinematic range
- Precision in a given bin of $\left(\mathrm{Q}^{2}, \S, \beta\right)$ correlates strongly with range in inelasticity y, dominated by systematics.
- Good prospects for $F_{L}^{D(3)}$ at EIC even with 5 energy combinations

More work:

- Other models: dipole, saturation, higher twists
- $\quad F_{L}^{D(4)}$ with t-dependence. Novel analysis, never measured
- Inclusive diffraction on nuclei

Diffraction at HERA: importance of 'Reggeon’

$\xi \sigma_{r}^{D(4)} \simeq \xi F_{2}^{D(4)}$ vs ξ for fixed $|t|=0.25 \mathrm{GeV}^{2}$ in bins of β, Q^{2}

Described by two contributions:
Leading 'Pomeron’ at low ξ
$\xi f_{I P} \sim \xi^{-0.22}$

Subleading 'Reggeon' at high ξ
$\xi f_{\mathbb{R}} \sim \xi^{1.0}$

Subleading terms poorly constrained

EIC pseudodata generation with t dependence

Use ZEUS $\mathbb{P}+\mathbb{R}$ fit with the GRV pion structure function for the \mathbb{R}
Pseudodata generated in all 4-variables : $\left(\beta=z, \xi, Q^{2}, t\right)$
Diffractive PDF:

$$
f_{k}^{D(4)}\left(z, Q^{2}, \xi, t\right)=\phi_{\mathbb{P}}(\xi, t) f_{k}^{\mathbb{P}}\left(z, Q^{2}\right)+\phi_{\mathbb{R}}(\xi, t) f_{k}^{\mathbb{R}}\left(z, Q^{2}\right)
$$

Fluxes:

Trajectories:

$$
\alpha_{\mathbb{M}}(t)=\alpha_{\mathbb{M}}(0)+\alpha_{\mathbb{M}}^{\prime} t \quad \mathbb{M}=\mathbb{P}, \mathbb{R}
$$

Reduced cross section:

$$
\begin{array}{r}
\sigma_{\text {red }}^{D(4)}=\phi_{\mathbb{P}}(\xi, t) \mathcal{F}_{2}^{\mathbb{P}}\left(\beta, Q^{2}\right)+\phi_{\mathbb{R}}(\xi, t) \mathcal{F}_{2}^{\mathbb{R}}\left(\beta, Q^{2}\right) \\
-\frac{y^{2}}{Y_{+}}\left[\phi_{\mathbb{P}}(\xi, t) \mathcal{F}_{L}^{\mathbb{P}}\left(\beta, Q^{2}\right)+\phi_{\mathbb{R}}(\xi, t) \mathcal{F}_{L}^{\mathbb{R}}\left(\beta, Q^{2}\right)\right]
\end{array}
$$

Flux parameters:

$$
\begin{aligned}
\xi \phi_{\mathbb{P}}(\xi, t) & \propto \xi^{-0.22} e^{-7|t|} \\
\xi \phi_{\mathbb{R}}(\xi, t) & \propto \xi^{0.6+1.8|t|} e^{-2|t|}=\xi^{0.6} e^{(-2+1.8 \ln \xi)|t|}
\end{aligned}
$$

ZEUS fit
parameters

EIC pseudodata generation: lumi, energy, errors

- Use NC simulations for EIC (no HERA nor CC yet)
- Three scenarios for integrated luminosity and energy :
- $\mathscr{L}=100 \mathrm{fb}^{-1}$ at high energy $E_{e}=18 \mathrm{GeV} \times E_{p}=275 \mathrm{GeV}$
- $\mathscr{L}=10 \mathrm{fb}^{-1}$ at high energy $E_{e}=18 \mathrm{GeV} \times E_{p}=275 \mathrm{GeV}$
- $\mathscr{L}=10 \mathrm{fb}^{-1}$ at low energy $E_{e}=5 \mathrm{GeV} \times E_{p}=41 \mathrm{GeV}$
- Require $0.005<y<0.96$
- Sparse and dense binning scenarios
- 5% uncorrelated systematics, 2% normalization error on top
- Randomly fluctuate each data point according to the uncertainties

Reggeon and Pomeron component in cross section at EIC

4D cross section pseudodata

- Changing t slope as transitioning from Pomeron to Reggeon dominated region
- σ_{r}^{D} slowly varying with Q^{2}

$$
\mathbb{R} / \mathbb{P} \text { ratio vs }-t \text { for } \xi=0.01,0.1
$$

- Change of ratio for small vs large ξ as a function of $-t$: different slope
- $\mathbb{R} / \mathbb{P}<1$ for small $\xi \sim 0.02$
- $\mathbb{R} / \mathbb{P}>1$ for larger $\xi \geq 0.1:$ not accessible at HERA

Parametrisation for fitting the pseudodata: full 4 D fit IP+IR

- Treat the Pomeron and Reggeon contributions as symmetrically as possible
- Light quark separation not possible with only inclusive NC fits
- For both \mathbb{P} and \mathbb{R} fit the gluon and the sum of quarks
- Generic parametrization at $Q_{0}^{2}=1.8 \mathrm{GeV}^{2}$:

$$
f_{k}^{(m)}\left(x, Q_{0}^{2}\right)=A_{k}^{(m)} x^{B_{k}^{(m)}}(1-x)^{C_{k}^{(m)}}\left(1+D_{k}^{(m)} x^{E_{k}^{(m)}}\right)
$$

where $k=q, g$ and $m=\mathbb{P}, \mathbb{R}$

- Following sensitivity studies a suitable choice is:
- f_{q}^{P} has A,B,C parameters
- f_{g}^{P} has A,B,C parameters
- f_{q}^{R} has $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ parameters
- $f_{g}^{\mathbb{R}}$ has A,B,C parameters
- In addition fit for the parameters of the fluxes for \mathbb{P} and $\mathbb{R}: \alpha(0), \alpha^{\prime}, B$

$$
\frac{e^{B^{(m)} t}}{\xi^{2 \alpha^{(m)}(t)-1}} \quad \alpha^{(m)}(t)=\alpha^{(m)}(0)+\alpha^{\prime(m)} t
$$

Recovering the Pomeron and Reggeon inputs

Fit results with free Reggeon parametrization (solid) made to the pseudodata based on the GRV pion structure function (dashed)
Reggeon reproduced reasonably well
Pomeron reproduced almost perfectly

Uncertainties of diffractive PDFs: Pomeron

Pomeron gluon
Pomeron gluon data cut: $\mathrm{t} \geq-1.5 \mathrm{GeV}^{2}$

Pomeron quark
Pomeron quark data cut: $\mathrm{t} \geq-1.5 \mathrm{GeV}^{2}$

- relative uncertainty
- <few \% or better in most regions
- larger uncertainty for gluon at large z (and also small z)
linear horizontal scale
note different vertical scale for gluons and quarks
- normalization error at 2% is dominant at most regions (dashed red)

Uncertainties of diffractive PDFs: Reggeon

- $<2 \%$ or better in most regions for quark except at large z
- Larger uncertainty for Reggeon gluon which is much smaller than Pomeron gluon
- Mild sensitivity to the cut on ξ for gluon, quark less sensitive
- Minimal sensitivity to the cut on t, dense vs sparse binning, lower luminosity $\mathscr{L}=10 \mathrm{fb}^{-1}$

EIC can constrain Reggeon at similar level of precision as the Pomeron even when restricting data to $|t| \leq 0.5 \mathrm{GeV}^{2}$ and $\xi_{\max } \simeq 0.15 \div 0.2$

Low energy scenario: 5 GeV x 41 GeV

- Low energy scenario:

$$
E_{e}=5 \mathrm{GeV} \times E_{p}=41 \mathrm{GeV}
$$

- Kinematics restricted:
- $\xi \geq 0.01$, by cms energy
- $t \geq-0.6 \mathrm{GeV}^{2}$, forward detector acceptance
- Reggeon dominated
- Fix Pomeron from HERA and fit only Reggeon
- Luminosity $\mathscr{L}=10 \mathrm{fb}^{-1}$

Low energy: Reggeon DPDFs and uncertainties

- Quark Reggeon constrained very well
- Larger uncertainty for Reggeon gluon which is much smaller than Pomeron gluon
- Two bands indicate sensitivity to two Monte Carlo samples: small variation

Low energy data at EIC can already determine Reggeon

Summary on 4D fit and Reggeon

- 4-D fit with Pomeron and Reggeon to the diffractive pseudodata
- EIC can extract flux parameters and partonic structure of the subleading 'Reggeon' exchange with similar precision to the leading 'Pomeron' exchange
- Constraints on Reggeon already from low energy run

More work needed on uncertainties:

- Experimental (correlated systematics)
- Theoretical (model dependence, parton parametrization)

Ideas for further studies:

- Combined HERA and EIC fits
- Charged current contribution

