Forward detectors with ePIC simulation (updates)

14 May 2024
Zvi Citron ${ }^{1}$, Michal Sedaka ${ }^{1}$, Eden Mautner ${ }^{1}$, Avishay Mizrahi ${ }^{2}$, Michael Pitt ${ }^{1,3}$
${ }^{1}$ Ben Gurion University of the Negev (Israel)
${ }^{2}$ Tel Aviv University (IL)
${ }^{3}$ The University of Kansas (USA)

Motivation

- In the past few month a few updates were made with the FF simulations, which impacts many processes studied at the EIC, which some of our interests:
- Background vetoing program (veto incoherent VM processes by tagging ion decay fragments)
- Soft photons (photons from ion deexcitation in quasi-coherent scattering)
- Nucleon tagging (proton in ep and protons/neutrons in eA)
- Today we provide a feedback on single particle response of the Far-Forward detector array in ePIC simulation (B0, RP, ZDC, OMD)

Main updates

- New ZDC geometry (PR610+ PR534)
- Forward beampipe + ZDC exit window (PR665)
- Beampipe is filled with vacuum (PR492 + NEW UPDATE)
- B0 detector crystals being harmonized with CAD drawing (NEW UPDATE)
+ Updates that I'm not aware of ...

Beampipe with vacuum

Code

```
Far-Forward detector array components are defined in
https://github.com/eic/epic/blob/main/compact/far forward/default.xml
```

<lccdd>
<include ref="ion_beamline.xml" />
<include ref="beampipe_hadron_B0.xml" />
<include ref="electron_beamline.xml" />
<include ref="B0_tracker.xml"/> [beampipe hadron B0.xml]:
<include ref="B0_ECal.xml"/>
<include ref="offM_tracker.xml"/>
<include ref="ZDC_SiPMonTile.xml"/>
<include ref="ZDC_Crystal_LYSO.xml"/>
<include ref="roman_pots_eRD24_design.xml"/>
<include ref="vacuum.xml"/>
<include ref="magnets.xml"/>
[ion beamline.xml]:
Forward Magnets, with coordinates defined in [definitions.xml]
beampipe in $\mathrm{B0} 0$ FF beampipe from B1APF to B2PF, filled with
vacuum, with ZDC exit window.
[vacuum.xml]:
vacuum between forward insert and B1APF

Beampipe with vacuum

Code

Far-Forward detector array components are defined in https://github.com/eic/epic/blob/main/compact/far forward/default.xml

[ion beamline.xml]:
Forward Magnets, with coordinates defined in [definitions.xml]
B0PF, B0APF, Q1APF, Q2BPF, Q2PF, B1PF, B1APF, B2PF
[beampipe hadron B0.xml]:
beampipe in $\mathrm{B0}+\mathrm{FF}$ beampipe from B1APF to B2PF, filled with vacuum, with ZDC exit window.
[vacuum.xml \rightarrow magnetVacuumFF.cpp]:
vacuum between forward insert and B1APF

Beampipe with vacuum

Code (updated)

New PR with vacuum filled from z~40 to 100 m (https://github.com/eic/epic/pull/720)

Execution time

- Generate 41 GeV protons, (the steering file shown in the backup)
ddsim --steeringFile test.py -N 10000 --compactFile \$DETECTOR_PATH/\$DETECTOR_CONFIG.xmI --outputFile edm4hep.root

Execution time

- Generate 41 GeV protons, (the steering file shown in the backup)
x4.2 times faster for proton beam
- Coherent J/psi in ePb

No ions: $\mathbf{2}$ s/Event, Standard: $\mathbf{1 8 0}$ s/Event, this RP: $\mathbf{1 5}$ sEvent

- Incoherent $\mathrm{J} / \mathrm{psi}$ in ePb (ion dissociation)

Standard: 310 s/Event, this RP: 30 sEvent x10 times faster for Pb beam

- We like to merge this PR as it improves simulation execution time for physics studies https://github.com/eic/epic/pull/720

BO geometry update

- Harmonization of the simulation geometry with the CAD drawing

BO geometry update

- Harmonization of the simulation geometry with the CAD drawing

Additional space that can be filled with crystals

0.5 mm between hadron beampipe ($r=3.1 \mathrm{~cm}$) and crystal edge (crystal $=2 \mathrm{~cm}+0.5 \mathrm{~mm}$ wrapper)

BO geometry update

- Harmonization of the simulation geometry with the CAD drawing

- Large tolerance between hadron beampipe and the detector
- Added more crystals on the electron side

BO geometry update

- CAD drawing was studied to identify which crystals need to be shorten in case detector is pulled backwards

Photons in BO

Acceptance in B0 X-Y plane

- Spatial photon acceptance tested with particle gun, and defined as:

$$
A=\frac{N\left(\theta_{X}^{*}, \theta_{Y}^{*} \mid E_{B O E C A L}>E_{t h}\right)}{N\left(\theta_{X}^{*}, \theta_{Y}^{*}\right)}
$$

- Set energy threshold in EMCAL> 0.5 GeV

Observations

- Photons out-of-fiducial region (outside EMCAL) deposit energy in EMCAL.
- Caused by photon conversion in earlier detector's material

Photons in BO

Acceptance in B0 X-Y plane

- Spatial photon acceptance tested with particle gun, and defined as:

$$
A=\frac{N\left(\theta_{X}^{*}, \theta_{Y}^{*} \mid E_{B O E C A L}>E_{t h}\right)}{N\left(\theta_{X}^{*}, \theta_{Y}^{*}\right)}
$$

- Set energy threshold in EMCAL> 20 GeV

Observations

- Photons out-of-fiducial region (outside EMCAL) deposit energy in EMCAL.
- Caused by photon conversion in earlier detector's material

Photons in BO

Acceptance in B0 X-Y plane

- G4 simulation provides information of the photon endpoint (where $\gamma \rightarrow e e$ starts)
- Issue with the central beampipe is persist

Plot photon endpoint along the X axis $\left(\theta_{\mathrm{Y}} \sim 0\right)$

BO detector performance (ddsim)

Energy response for $\theta<13 \mathrm{mrad}$

- To study the entire detector's sensitive area beampipe was removed from the simulation.
- When photons interact before the B0ECAL energy response is not defined (fluctuations and bias)
- NOTE: light yields are not included yet (reco level)

ePIC Simulation

BO detector performance (EICRecon)
 ePIC Simulation
 B0 Clusters Hits

Energy response for $\theta<13 \mathrm{mrad}$

- To study the entire detector's sensitive area beampipe was removed from the simulation.
- When photons interact before the B0ECAL energy response is not defined (fluctuations and bias)
- NOTE: light yields are not included yet (reco level)

$$
E(p h)=110 G e V
$$

Photons in ZDC

Acceptance in ZDC X-Y plane

- Spatial photon acceptance tested with particle gun, and defined as:

$$
A=\frac{N\left(\theta_{X}^{*}, \theta_{Y}^{*} \mid E_{Z D C}>E_{t h}\right)}{N\left(\theta_{X}^{*}, \theta_{Y}^{*}\right)}
$$

- Set energy threshold in ZDC > 0.05 GeV

Observations

- Photons contained within the hadron beampipe inside the B0 magnet.

Photons in ZDC

Acceptance in ZDC X-Y plane

- Spatial photon acceptance tested with particle gun, and defined as:

$$
A=\frac{N\left(\theta_{X}^{*}, \theta_{Y}^{*} \mid E_{Z D C}>E_{t h}\right)}{N\left(\theta_{X}^{*}, \theta_{Y}^{*}\right)}
$$

- Set energy threshold in ZDC > 2 GeV

Observations

- Photons contained within the hadron beampipe inside the B0 magnet.
- Small overlap with RP boxes?

Photons in ZDC

Acceptance in B0 X-Y plane

- G4 simulation provides information of the photon endpoint (where $\gamma \rightarrow e e$ starts)
- Photons blocked by the hadron beampipe in B0

Generated photon θ_{x} [mrad]

ZDC detector performance (EICRecon)

Particle gun with photons

- Photons with $\theta<2$ mrad, endpoint $>35 \mathrm{~m}$.
- Photon energy response from ECAL + HCAL

> Similar saturation in ZDC ECAL for reconstructed clusters

Forward neutrons

For $\theta>5$ mrad: B0 - detection efficiency of 50% (B0 ECAL λ is larger than 1)
For $\theta<5$ mrad: all neutrons measured in the ZDC

[^0]

Forward neutrons

For $\theta>5$ mrad: BO - detection efficiency of 50% (B0 ECAL λ is larger than 1)
Energy resolution for neutron in B0 is very poor, not clear at all if we can aim detecting neutrons

Forward protons

- Protons with $\theta>5$ mrad and $E=110 \mathrm{GeV}$ were generated in 18×275 configuration.
- All protons end up < 10 meter, many in the B0 detector
- 110 GeV protons (from Pb) have bias in $\mathrm{B0}$ tracker

Forward protons

Protons with $\theta<5$ mrad and $\mathrm{E}=275 \mathrm{GeV}$ were generated in 18×275 configuration. Overlap between RP and OMD? No recontacted protons in RP (investigating) Using momentum of ForwardOffMRecParticles and ForwardRomanPotRecParticles

Forward protons

Protons with $\theta=0$ mrad and $\mathrm{E}<275 \mathrm{GeV}$ were generated in 18×275 configuration. Protons with energy from 130 to 140 GeV measured with the $\mathrm{OMD}\left(0.45<x_{\mathrm{L}}<0.5\right)$ Protons with energy within $90-105 \mathrm{GeV}$ get to OMD

Summary

Summary:

- Vacuum was extended until the end of the physical volume
- B0 geometry harmonization with CAD + optimization is ongoing
- We need to agree on the geometry
- The position of the crystals can be further optimized.
- New exit window allow photons to reach the ZDC
- Charged particle propagation looks OK, but we have some issues at the reconstruction (branches, settings...)
- Reconstructed energy in crystals (B0, ZDC) - needs further investigation

Backup

BO geometry update

- Harmonization of the simulation geometry with the CAD drawing

Possible bugs

$$
\begin{aligned}
& O D(z=670 \mathrm{~mm})=63.5 \mathrm{~mm}(\theta-25 \mathrm{mrad} / 2=35 \mathrm{mrad}) \\
& O D(z=1750 \mathrm{~mm})=92.06 \mathrm{~mm}(\theta-25 \mathrm{mrad} / 2=13.7 \mathrm{mrad}) \\
& O D(z=4455)=258 \mathrm{~mm}(\theta-25 \mathrm{mrad} / 2=16.5 \mathrm{mrad})
\end{aligned}
$$

https://github.com/eic/epic/blob/New B0ECAL geo/compact/central beampipe.xml
<zplane z="BeampipeDownstreamstraightLength + 0.5 * BeampipeOD * tan(abs(CrossingAngle))" OD="BeampipeOD"/>
<zplane z="1750.00 * mm" OD=" 92.06 * mm"/>
<zplane z="4455.80 * mm" OD="257.92 * mm"/>

Inflating these numbers allow photons with $15 \mathrm{mrad}<\theta<23$ reach the B0ECAL

BO geometry update

- Moving the BOECAL 5 cm forward, $Z=0 \mathrm{~cm}$

At the current position of the calorimeter there is no collision with the magnet

BO geometry update

- Moving the BOECAL 5 cm forward, $Z=5 \mathrm{~cm}$

No collision with the magnet

BO geometry update

- Moving the BOECAL 5 cm forward, $Z=10 \mathrm{~cm}$

No collision with the magnet

BO geometry update

- Moving the BOECAL 5 cm forward, $Z=15 \mathrm{~cm}$

No collision with the magnet

BO geometry update

- Moving the BOECAL 5 cm forward, $Z=20 \mathrm{~cm}$

In the P5 state there are 3 collisions with the magnet located in the shortened crystals.

BO geometry update

- Moving the BOECAL 5 cm forward, $Z=25 \mathrm{~cm}$

In the P6 state there are 4 collisions with the magnet located in the shortened crystals.

Technical details

ddsim setup:

ddsim --steeringFile job.py -G -N 100 \}
--compactFile \$DETECTOR_PATH/epic_craterlake_18x275.xml \}
--outputFile edm4hep.root --random.seed 624

EICRecon setup:

source /opt/detector/setup.sh
export DETECTOR_CONFIG=epic_craterlake_18x275
eicrecon -Pjana:nevents=-1
-Ppodio:output_include_collections=MCParticles, ReconstructedChargedParticles, B0ECaIClusters, ForwardOffMRecParticles, ForwardRomanPotRecParticles, EcalFarForwardZDCClusters, HcalFarForwardZDCClusters, B0ECalHits \}
edm4hep.root

Forward photons

Acceptance in B0 X-Y plane

- G4 simulation provides information of the photon endpoint (where $\gamma \rightarrow e e$ starts)
- Remove central beampipe (\$\{DETECTOR_PATH\}/compact/central_beampipe.xml)

Plot photon endpoint along the X axis $\left(\theta_{Y} \sim 0\right)$

Forward photons

Acceptance in B0 X-Y plane

- G4 simulation provides information of the photon endpoint (where $\gamma \rightarrow e e$ starts)
- Remove central beampipe (\$\{DETECTOR_PATH\}/compact/central_beampipe.xm.,
- Remove dRICH (\$\{DETECTOR_PATH\}/compact/pid/drich.xml)

Plot photon endpoint along the X axis $\left(\theta_{\mathrm{Y}} \sim 0\right)$

Steering file

from DDSim.DD4hepSimulation import DD4hepSimulation
from g4units import mm, GeV, MeV, mrad
SIM = DD4hepSimulation()
\# \#\# Configuration for the DDG4 ParticleGun \# SIM.enableGun = True
\#\# Lorentz boost for the crossing angle (a boost along the X coordinate) SIM.crossingAngleBoost $=-25.0^{*} \mathrm{mrad}$

SIM.gun.momentumMin $=41 * \mathrm{GeV}$
SIM.gun.momentumMax $=41^{*} \mathrm{GeV}$
SIM.gun.particle = 'proton'
\#\# MinimalKineticEnergy to store particles created in the tracking region SIM.part. minimalKineticEnergy $=1.0^{*} \mathrm{GeV}$

[^0]: 14 May 2023

