EPIC Far-Forward Weekly Meeting

Forward detectors with ePIC simulation (updates)

14 May 2024

Zvi Citron¹, Michal Sedaka¹, Eden Mautner¹, Avishay Mizrahi², <u>Michael Pitt</u>^{1,3}

¹Ben Gurion University of the Negev (Israel) ² Tel Aviv University (IL) ³The University of Kansas (USA)

Motivation

- In the past few month a few updates were made with the FF simulations, which impacts many processes studied at the EIC, which some of our interests:
 - Background vetoing program (veto incoherent VM processes by tagging ion decay fragments)
 - Soft photons (photons from ion deexcitation in quasi-coherent scattering)
 - Nucleon tagging (proton in ep and protons/neutrons in eA)
- Today we provide a feedback on single particle response of the Far-Forward detector array in ePIC simulation (B0, RP, ZDC, OMD)

Main updates

- New ZDC geometry (<u>PR610</u>+ <u>PR534</u>)
- Forward beampipe + ZDC exit window (<u>PR665</u>)
- Beampipe is filled with vacuum (PR492 + NEW UPDATE)
- B0 detector crystals being harmonized with CAD drawing (**NEW UPDATE**)
- + Updates that I'm not aware of ...

Beampipe with vacuum

Code

Far-Forward detector array components are defined in

https://github.com/eic/epic/blob/main/compact/far_forward/default.xml

Forward Magnets, with coordinates defined in [definitions.xml]

[beampipe hadron B0.xml]:

beampipe in B0 + FF beampipe from B1APF to B2PF, filled with vacuum, with ZDC exit window.

vacuum between forward insert and B1APF

Beampipe with vacuum

Code

Far-Forward detector array components are defined in

https://github.com/eic/epic/blob/main/compact/far_forward/default.xml

[ion beamline.xml]:

Forward Magnets, with coordinates defined in [definitions.xml] B0PF, B0APF, Q1APF, Q2BPF, Q2PF, B1PF, B1APF, B2PF

[beampipe hadron B0.xml]:

beampipe in B0 + FF beampipe from B1APF to B2PF, filled with vacuum, with ZDC exit window.

<u>[vacuum.xml \rightarrow magnetVacuumFF.cpp]</u>:

vacuum between forward insert and B1APF

Beampipe with vacuum

Code (updated)

New PR with vacuum filled from z~40 to 100 m (<u>https://github.com/eic/epic/pull/720</u>)

[ion beamline.xml]:

Forward Magnets, with coordinates defined in [definitions.xml] B0PF, B0APF, Q1APF, Q2BPF, Q2PF, B1PF, B1APF, B2PF

[beampipe hadron B0.xml]:

beampipe in B0 + FF beampipe from B1APF to B2PF, filled with vacuum, with ZDC exit window.

$[vacuum.xml \rightarrow magnetVacuumFF.cpp]:$

vacuum between forward insert and B1APF + new

vacuum from B2PF (including) until Z=100m

sdet.setAttributes(det, vpiece, x_det.regionStr(), x_det.limitsStr(),

"InvisibleNoDaughters"): // make invisible instead of AnlBlue

Execution time

• Generate 41GeV protons, (the steering file shown in the backup)

ddsim --steeringFile test.py -N 10000 --compactFile \$DETECTOR_PATH/\$DETECTOR_CONFIG.xml --outputFile edm4hep.root

Execution time

• Generate 41GeV protons, (the steering file shown in the backup)

x4.2 times faster for proton beam

• Coherent J/psi in ePb

No ions: 2 s/Event, Standard: 180 s/Event, this RP: 15 sEvent

Incoherent J/psi in ePb (ion dissociation)

Standard: 310 s/Event, this RP: 30 sEvent x10 times faster for Pb beam

• We like to merge this PR as it improves simulation execution time for physics studies https://github.com/eic/epic/pull/720

- Large tolerance between hadron beampipe and the detector
- Added more crystals on the electron side

CAD drawing was studied to identify which crystals need to be shorten in case detector is pulled backwards

Photons in BO

Acceptance in B0 X-Y plane

 Spatial photon acceptance tested with particle gun, and defined as:

$$A = \frac{N(\theta_X^*, \theta_Y^* | E_{B0ECAL} > E_{th})}{N(\theta_X^*, \theta_Y^*)}$$

• Set energy threshold in EMCAL> 0.5 GeV

Observations

- Photons out-of-fiducial region (outside EMCAL) deposit energy in EMCAL.
- Caused by photon conversion in earlier

detector's material

Photons in BO

Acceptance in B0 X-Y plane

 Spatial photon acceptance tested with particle gun, and defined as:

$$A = \frac{N(\theta_X^*, \theta_Y^* | E_{BOECAL} > E_{th})}{N(\theta_X^*, \theta_Y^*)}$$

• Set energy threshold in EMCAL> 20 GeV

Observations

- Photons out-of-fiducial region (outside EMCAL) deposit energy in EMCAL.
- Caused by photon conversion in earlier

detector's material

Photons in BO

Acceptance in B0 X-Y plane

- G4 simulation provides information of the photon endpoint (where $\gamma \rightarrow ee$ starts)
- Issue with the central beampipe is persist

BO detector performance (ddsim)

Energy response for $\theta < 13$ mrad

- To study the entire detector's sensitive area beampipe was removed from the simulation.
- When photons interact before the B0ECAL energy response is not defined (fluctuations and bias)
- NOTE: light yields are not included yet (reco level)

BO detector performance (EICRecon)

Energy response for $\theta < 13$ mrad

- To study the entire detector's sensitive area beampipe was removed from the simulation.
- When photons interact before the B0ECAL energy response is not defined (fluctuations and bias)
- NOTE: light yields are not included yet (reco level)

Photons in ZDC

Acceptance in ZDC X-Y plane

• Spatial photon acceptance tested with particle gun, and defined as:

$$4 = \frac{N(\theta_X^*, \theta_Y^* | E_{ZDC} > E_{th})}{N(\theta_X^*, \theta_Y^*)}$$

• Set energy threshold in ZDC > 0.05 GeV

Observations

 Photons contained within the hadron beampipe inside the B0 magnet.

Photons in ZDC

Acceptance in ZDC X-Y plane

• Spatial photon acceptance tested with particle gun, and defined as:

$$4 = \frac{N(\theta_X^*, \theta_Y^* | E_{ZDC} > E_{th})}{N(\theta_X^*, \theta_Y^*)}$$

• Set energy threshold in ZDC > 2 GeV

Observations

- Photons contained within the hadron beampipe inside the B0 magnet.
- Small overlap with RP boxes?

Photons in ZDC

Acceptance in B0 X-Y plane

- G4 simulation provides information of the photon endpoint (where $\gamma \rightarrow ee$ starts)
- Photons blocked by the hadron beampipe in B0

ZDC detector performance (EICRecon)

Particle gun with photons

- Photons with θ <2mrad, endpoint>35m.
- Photon energy response from ECAL + HCAL

Similar saturation in ZDC ECAL for reconstructed clusters

Forward neutrons

For $\theta > 5$ mrad: B0 – detection efficiency of 50% (B0 ECAL λ is larger than 1)

For θ < 5 mrad: all neutrons measured in the ZDC

Forward neutrons

For $\theta > 5$ mrad: B0 – detection efficiency of 50% (B0 ECAL λ is larger than 1) Energy resolution for neutron in B0 is very poor, not clear at all if we can aim detecting neutrons

Forward protons

- Protons with θ >5 mrad and E = 110 GeV were generated in 18x275 configuration.
- All protons end up < 10 meter, many in the B0 detector
- 110 GeV protons (from Pb) have bias in B0 tracker

Forward protons

Protons with θ <5 mrad and E = 275 GeV were generated in 18x275 configuration. Overlap between RP and OMD? No recontacted protons in RP (investigating) Using momentum of *ForwardOffMRecParticles* and *ForwardRomanPotRecParticles*

Forward protons

Protons with θ =0 mrad and E < 275 GeV were generated in 18x275 configuration.

Protons with energy from 130 to 140 GeV measured with the OMD ($0.45 < x_L < 0.5$)

Protons with energy within 90 – 105 GeV get to OMD

Summary

Summary:

- Vacuum was extended until the end of the physical volume
- B0 geometry harmonization with CAD + optimization is ongoing
 - We need to agree on the geometry
 - The position of the crystals can be further optimized.
- New exit window allow photons to reach the ZDC
- Charged particle propagation looks OK, but we have some issues at the reconstruction (branches, settings...)
- Reconstructed energy in crystals (B0, ZDC) needs further investigation

Backup

Possible bugs

 $OD(z=670mm) = 63.5mm (\theta-25mrad/2=35mrad)$ $OD(z=1750mm) = 92.06mm (\theta-25mrad/2=13.7mrad)$ $OD(z=4455) = 258mm (\theta-25mrad/2=16.5mrad)$

https://github.com/eic/epic/blob/New_B0ECAL_geo/compact/central_beampipe.xml

<zplane z="BeampipeDownstreamStraightLength + 0.5 * BeampipeOD * tan(abs(CrossingAngle))" OD="BeampipeOD"/>
<zplane z="1750.00 * mm" OD=" 92.06 * mm"/>
<zplane z="4455.80 * mm" OD="257.92 * mm"/>

Inflating these numbers allow photons with 15mrad < θ < 23 reach the B0ECAL

14 May 2023

• Moving the B0ECAL 5cm forward, Z = 0cm

At the current position of the calorimeter there is no collision with the magnet

• Moving the B0ECAL 5cm forward, Z = 5cm

No collision with the magnet

• Moving the B0ECAL 5cm forward, Z = 10cm

No collision with the magnet

• Moving the B0ECAL 5cm forward, Z = 15cm

No collision with the magnet

• Moving the B0ECAL 5cm forward, Z = 20cm

In the P5 state there are 3 collisions with the magnet located in the shortened crystals.

• Moving the B0ECAL 5cm forward, Z = 25cm

In the P6 state there are 4 collisions with the magnet located in the shortened crystals.

Technical details

ddsim setup:

- ddsim --steeringFile job.py -G -N 100 \
- --compactFile \$DETECTOR_PATH/epic_craterlake_18x275.xml \
- --outputFile edm4hep.root --random.seed 624

EICRecon setup:

- source /opt/detector/setup.sh
- export DETECTOR_CONFIG=epic_craterlake_18x275
- eicrecon -Pjana:nevents=-1
- -Ppodio:output_include_collections=MCParticles, ReconstructedChargedParticles, B0ECalClusters,
- ForwardOffMRecParticles, ForwardRomanPotRecParticles, EcalFarForwardZDCClusters,
- HcalFarForwardZDCClusters, B0ECalHits \
- edm4hep.root

Forward photons

Acceptance in B0 X-Y plane

- X 6 61-28
- G4 simulation provides information of the photon endpoint (where $\gamma \rightarrow ee$ starts)
- Remove central beampipe (\${DETECTOR_PATH}/compact/central_beampipe.xml)

Forward photons

Acceptance in B0 X-Y plane

- m.,
- G4 simulation provides information of the photon endpoint (where $\gamma \rightarrow ee$ starts)
- Remove central beampipe (\${DETECTOR_PATH}/compact/central_beampipe.xm.,
- Remove dRICH (\${DETECTOR_PATH}/compact/pid/drich.xml)

Steering file

from DDSim.DD4hepSimulation import DD4hepSimulation
from g4units import mm, GeV, MeV, mrad
SIM = DD4hepSimulation()

Lorentz boost for the crossing angle (a boost along the X coordinate) SIM.crossingAngleBoost = -25.0*mrad

```
SIM.gun.momentumMin = 41*GeV
SIM.gun.momentumMax = 41*GeV
SIM.gun.particle = 'proton'
```

MinimalKineticEnergy to store particles created in the tracking region SIM.part.minimalKineticEnergy = 1.0*GeV