Vertex Position for TO Determination

Brian Page
GD&I WG Meeting
October 24th, 2022

Outline

- ☐ Description of model used to simulate vertex distributions and correlations between vertex positions and collision times
- ☐ Techniques used to extract T0 18x275 beam energy
- \square Comparisons with 10x100 and 5x41 beam energies

Vertex Model

Vertex Model

- ☐ The model shown on the previous slide is of course a simplification, although the general features will hold
 - Everything is assumed as gausian no tails or skew to the bunch shape
 - Particle transport model by Jarda can be seen here: https://www.dropbox.com/s/u3ssx2je2syaite/movie.mp4?dl=0
- Bottom line: The techniques discussed should be sound and magnitude of the effects we see should be accurate, but don't assume the TO resolutions are exact to the picosecond level
- N.B. The bunch directions shown on the previous slide are for IP8, but this has no effect on the conclusions below

Z-Vertex – T0 Correlations: 18x275

☐ Z-Vertex and T0 of the collision are tightly correlated due to the relative size differences of the hadron and electron bunches (6 vs 0.9 cm) – practically, determined by size of electron bunch

Z-Vertex – T0 Correlations: 18x275

Z [mm]	Mean [mm]	Sigma [mm]	
[-101,-99]	96.1	9.3	
[-76,-74]	71.7	8.84	
[-51,-49]	47.7	8.84	
[-26,-24]	23.8	8.89	
[-1,1]	-0.08	8.90	
[24,26]	-24.0	8.89	
[49,51]	-47.8	8.88	
[74,76]	-71.8	8.70	
[99,101]	-96.1	9.01	

- ☐ For a given Z-vertex, the possible T0 values follow a gaussian distribution
- ☐ The sigma of the T0 distribution is roughly constant as a function of Z and has a value of ~8.9 mm (~30 ps)
- ☐ Conversion between mm and ps: divide by 0.3 mm/ps

☐ Z-Vertex and T0 of the collision are tightly correlated due to the relative size differences of the hadron and electron bunches (6 vs 0.9 cm) – practically, determined by size of electron bunch

Interaction Time Vs Z-vertex

Adding X-Vertex Information: 18x275

- ☐ Because of the crossing angle and bunch crabbing, the X-vertex of the collision will change as the bunches move through each other
- The X position is not very well correlated with Z (or T0), but a combination of any two of X, Z, and T0 should be well correlated with the third
- ☐ Break the T0 Vs Z-vertex plot into bins based on X-vertex position
- ☐ X bins are 50 microns wide should be an achievable resolution

Vertex Resolution

Taken from ATHENA proposal – meant to provide a sense of what resolution would be reasonable

Adding X-Vertex Information: 18x275

Interaction Time Vs Z-vertex

- ☐ Choose the Z-vertex bin at -25 mm and look at TO distributions for various X-vertex bins
- ☐ X and Z binned T0 distributions have much better resolution than Z binned alone (~18 vs ~30 ps)

X Bin	Mean [mm]	Sigma [mm]
0	34.6	6.14
1	29.5	5.4
2	27.0	5.36
3	24.5	5.39
4	22.0	5.44
5	19.5	5.38
6	14.1	6.24

■ Basically, X-Vertex position is telling where within the electron bunch the colliding particle comes

Z-Vertex – T0 Correlations: 10x100

Z [mm]	Mean [mm]	Sigma [mm]
[-101,-99]	98.0	6.96
[-76,-74]	73.5	6.89
[-51,-49]	48.9	6.95
[-26,-24]	24.4	6.98
[-1,1]	-0.11	6.96
[24,26]	-24.6	6.97
[49,51]	-49.1	6.94
[74,76]	-73.5	6.91
[99,101]	-98.2	6.74

X-Vertex – Z-Vertex – T0 Correlations: 10x100

X Bin	Mean [mm]	Sigma [mm]
0	31.5	5.58
1	28.1	5.20
2	26.3	5.25
3	24.7	5.23
4	22.9	5.24
5	21.1	5.18
6	17.7	5.61

Z-Vertex – T0 Correlations: 5x41

Z [mm]	Mean [mm]	Sigma [mm]	
[-101,-99]	98.3	6.89	
[-76,-74]	73.6	6.94	
[-51,-49]	49.0	6.99	
[-26,-24]	24.5	6.99	
[-1,1]	-0.1	6.99	
[24,26]	-24.7	7.00	
[49,51]	-49.2	6.95	
[74,76]	-73.8	6.95	
[99,101]	-98.3	6.83	

X-Vertex – Z-Vertex – T0 Correlations: 5x41

X Bin	Mean [mm]	Sigma [mm]
0	29.5	6.19
1	26.8	5.97
2	25.7	5.93
3	24.6	5.90
4	23.4	5.99
5	22.3	5.89
6	19.6	6.10

Summary

Bunch sizes and beam crossing configuration provide opportunity to derive the time of the collision from the position of the primary vertex
Based on the model used to simulate beam effects in MC, T0 resolutions on the order of 20 to 25 pico seconds should be achievable by measuring the X and Z positions of the primary vertex within reasonable tolerances
Beam energy combinations of 18x275, 10x100, and 5x41 in hi-divergence mode were compared: To resolutions for 18x275 and 10x100 were comparable and somewhat better than for 5x41
Possible next step – look into EIC machine simulations of the interacting beams to confirm model predictions
Additional information in the technical note on Beam Effects: https://zenodo.org/record/6514605#.Y0VOrS-B1qs

Back-up

PYTHIA-8 Vertex Model

$$z_{\mathrm{Had}}^{\mathrm{Acc}} = \mathrm{Cos}\left(\frac{\theta}{2}\right) \times t + z_{\mathrm{Had}}^{\mathrm{Bunch}}$$

$$z_{\mathrm{Lep}}^{\mathrm{Acc}} = -\mathrm{Cos}\left(\frac{\theta}{2}\right) \times t + z_{\mathrm{Lep}}^{\mathrm{Bunch}}$$

Z-position of interacting bunch from each beam as a function of time given by this set of equations

Collisioin occurs when Z_Had and Z_Lep are equal – can then solve the system to get time, z-position, and x-position of collision

$$t_{\mathrm{Col}} = rac{\left(z_{\mathrm{Lep}}^{\mathrm{Bunch}} - z_{\mathrm{Had}}^{\mathrm{Bunch}}
ight)}{2 imes \mathrm{Cos}\left(rac{ heta}{2}
ight)}$$
 $z_{\mathrm{Col}} = rac{\left(z_{\mathrm{Lep}}^{\mathrm{Bunch}} + z_{\mathrm{Had}}^{\mathrm{Bunch}}
ight)}{2}$
 $x_{\mathrm{Col}} = t_{\mathrm{Col}} imes \mathrm{Sin}\left(rac{ heta}{2}
ight).$

Transport Model Vertex

Developed by Jaroslav Adam – movie available at: https://eic.github.io/resources/simulations.html

Species, energy (GeV)		Vertex size Transport model		PYTHIA-8	
proton 275	electron 18	$ \begin{array}{c} \sigma_x \text{ (mm)} \\ \sigma_y \text{ (µm)} \\ \sigma_z \text{ (mm)} \end{array} $	$\begin{array}{c} 0.1894 \pm 0.0014 \\ 10.0675 \pm 0.0013 \\ 32.92 \pm 0.12 \end{array}$	$\begin{array}{c} 0.1403 \pm 0.0001 \\ 8.0173 \pm 0.0056 \\ 30.24 \pm 0.02 \end{array}$	
proton 100	electron 10	$ \begin{array}{c} \sigma_x \text{ (mm)} \\ \sigma_y \text{ (µm)} \\ \sigma_z \text{ (mm)} \end{array} $	$\begin{array}{c} 0.2057 \pm 0.0023 \\ 12.2144 \pm 0.0018 \\ 36.00 \pm 0.15 \end{array}$	$\begin{array}{c} 0.1313 \pm 0.0001 \\ 8.0221 \pm 0.0057 \\ 35.13 \pm 0.02 \end{array}$	
proton 41	electron 5	$ \begin{array}{c} \sigma_x \text{ (mm)} \\ \sigma_y \text{ (µm)} \\ \sigma_z \text{ (mm)} \end{array} $	$\begin{array}{c} 0.2429 \pm 0.0020 \\ 25.0197 \pm 0.0060 \\ 37.77 \pm 0.28 \end{array}$	$\begin{array}{c} 0.1649 \pm 0.0001 \\ 19.0005 \pm 0.0134 \\ 37.62 \pm 0.03 \end{array}$	
Au ion 110	electron 18	$ \begin{array}{c} \sigma_x \text{ (mm)} \\ \sigma_y \text{ (µm)} \\ \sigma_z \text{ (mm)} \end{array} $	$\begin{array}{c} 0.3210 \pm 0.0035 \\ 15.1721 \pm 0.0025 \\ 36.00 \pm 0.07 \end{array}$		
Au ion 41	electron 5	$ \begin{vmatrix} \sigma_x \text{ (mm)} \\ \sigma_y \text{ (µm)} \\ \sigma_z \text{ (mm)} \end{vmatrix} $	$\begin{array}{c} 0.3130 \pm 0.0022 \\ 15.3381 \pm 0.0048 \\ 59.91 \pm 0.36 \end{array}$		

Table 3: Results on expected primary vertex size from the transport model for ep and e-Au beams and comparison to PYTHIA-8.

TO for Z Slices and X Vs Z-Vertex Positions: 10x100

T0 for Z Slices and X Vs Z-Vertex Positions: 5x41

Relevant Beam Parameters

Table 4: Parameters used in the PYTHIA-8 implementation taken from Table 3.3 in the CDR. The designations h and v stand for horizontal (x direction) and vertical (y direction).

Species	Proton	Electron	Proton	Electron	Notes
Energy [GeV]	275	18	41	5	
RMS Emittance h/v [nm]	18/1.6	24/20	44/10	20/3.5	Used with β^* to determine bunch size
$\beta^* \text{ h/v [cm]}$	80/7.1	59/5.7	90/7.1	196/21	Used with emittance to determine bunch size
RMS $\Delta\theta$ h/v [μ rad]	150/150	202/187	220/380	101/129	Used to determine angular beam divergence
RMS Bunch Length [cm]	6	0.9	7.5	0.7	Used in vertex calculation
RMS $\frac{\Delta p}{p}$ [10 ⁻⁴]	6.8	10.9	10.3	6.8	Used to set beam energy spread