Search for Higgs boson decay to invisible particles

Dr. Kétévi Adiklè Assamagan

What I am going to do ...

- Review Higgs boson discovery channels and properties
- The case for physics beyond the Standard Model of particle physics
- Search for dark sector states
- Higgs decay to invisible particles and interpretation for dark matter
- Physics engagement
- ATLAS ITk FELIX readout test stand at BNL

The 'Standard Model' = Cosmic DNA

The matter particles

The fundamental interactions

The Higgs boson gives mass to fundamental particles

Without Higgs ...

... there would be no atoms

- massless electrons would escape at the speed of light
- ... there would be no heavy nuclei
- ... weak interactions would not be weak
 - Life would be impossible: everything would be radioactive

Lake of Geneva

The LHC is a 27 km long collider ring housed in a tunnel about 100 m underground near Geneva

BNL Summer Lecture Series

6/24/202

²² CMS: Higgs and dark matter Matter LHCb: Matter-antimatter difference

The Underground Cavern for the ATLAS Detector

Length	= 55 m
Width	= 32 m
Height	= 35 m

ATLAS Detector at the LHC ~3000 Physicists 45 m 550M Suisse Franks

Confirming previous measurements or discoveries

• Before we do new searches, we have to show that we measure accurately what is already known

Higgs boson production and decays

The ATLAS and CMS Experiments at the LHC have discovered, independently, a Higgs boson with mass around 125 GeV using these productions and decay modes

The Higgs Boson Discovery

Single channel discovery: 7.4 σ

Single channel discovery: 6.60

Higgs coupling measurements

Signal Strength relative to SM

8 $-2 \ln \Lambda$ **ATLAS** Total - Remove Bkg. th. $\sqrt{s} = 13 \text{ TeV}, 24.5 - 79.8 \text{ fb}^{-1}$ Remove Sig. th. $m_{H} = 125.09 \text{ GeV}, |y_{H}| < 2.5$ 6 ----- Stat. р_{SM} = 18% 5 4 3 0 1.3 1.2 1.1 μ

 $\mu = 1.11 + 0.09 - 0.08$

 $pp \rightarrow H + X Cross section measurements$

Top-quark sector

Summary of ATLAS measurements of the top-pair production cross-section as a function of the center-of-mass energy compared to the NNLO QCD calculation complemented with NNLL resummation (top++2.0).

$H \rightarrow BSM$ contribution to the Higgs width

Search for new physics

- Higgs Discovery confirmed in later measurements
- Measurement of properties consistent with expectations from the SM
- But are there more than one Higgs boson?
 - Beyond-the-Standard-Model (BSM) Higgs searches
- We can use the Higgs boson as a portal to "new physics" :
 - Can we search for new physics in the decay of the Higgs boson?
 - Or in association with it?
 - Or in the small deviations in the properties with respect to the SM expectations?

The Dark Matter Hypothesis

- Proposed by Fritz Zwicky, based on observations of the Coma galaxy cluster
- The galaxies move too quickly
- The observations require a
 - stronger gravitational field
 - than provided by the visible matter
- Dark matter?

The Rotation Curves of Galaxies

- Measured by Vera Rubin
- The stars also orbit 'too quickly'
- Her observations also required a stronger gravitational field than provided by the visible matter
- Further strong evidence for dark matter

Scanned at the American Institute of Physics

Direct Dark Matter Detection

Classic Dark Matter Signature at LHC

Missing transverse energy carried away by dark matter particles

Dark Sector

• Dark Sector states as "New Physics" beyond the SM

Need new force / interaction to connect SM to Dark Sector — portals. Weak couplings through kinetic mixing, Higgs or mass mixings

Dark Matter could just be one example of Dark Sector States

BNL Summer Lecture Series

Some Classic Signatures at LHC

Missing transverse energy carried away by Dark Matter particles

VBF $H \rightarrow$ invisible

Some Classic Signatures at LHC

Dark Sector States decaying to SM particles

where S = Dark Scalar Z_d = Dark Vector Boson

6/24/2024

$H \rightarrow invisible$

- Some Dark Sector particle $\chi,$ neutral and stable over the range of the detector
 - It is not a neutrino. A BSM-Particle
 - Its mass $m_{\chi} < m_{H} / 2$ such that $H \rightarrow \chi \chi$. The detector would be insensitive to such a decay so we call it $H \rightarrow$ invisibles
- If it is "invisible", how do we detect it?
 - Since the particle χ does not interact with the detector, it will escape, undetected, with some kinetic energy
 - By using conservation of 4-moment, after accounting for all the other detected particles, we can infer how much energy/momentum is carried away, therefore missing
 - So we can measure the missing transverse energy or the missing momentum
 - χ could be a candidate for Dark Matter particle

$H \rightarrow invisible$

(c) Example diagram for the electroweak VBF Z+jets background process

(b) Example diagram for the strong Z+jets background process

(d) Example diagram for the electroweak diboson process

$H \rightarrow invisible$

Branching Ratio Limit < 0.15 at 95% Confidence Level

$H \rightarrow$ invisible — Dark Matter interpretation

Work I did with Mohamed Zaazoua (graduate student from Morocco, alumnus of the African School of Physics 2021), currently a post-doc on ATLAS. Published here <u>https://doi.org/10.31526/lhep.2022.270</u>

$H \rightarrow$ invisible combination

BR (H \rightarrow invisible) < 10% at 95% CL

$H \rightarrow$ invisible — Dark Matter interpretation

Upper bound of the DM-Nucleon Scattering Cross Section

ITk—FELIX readout test stand

@CERN—similar setup, in Lab 1-203, being developed at BNL

Objective (3):

Develop data readout system further in the framework that will be used for ITk in HL-LHC

> The Front-End Link eXchange (FELIX) interface between the trigger and detector electronics for ATLAS

Objective (1): Run stave tests with FELIX

Objective (2): Demonstrate that data path between host and HCC*/ABC* works correctly

Broader Impact

- 1. **Community Outreach through QuarkNet** Professional development programs for physics teachers and pupils
- 2. US-ATLAS targeted outreach toward US **URM and MSI**
 - Improved and sustained engagements with URM and MSI to increase participation

- 3. International Outreach
 - US-ATLAS Outreach: Africa, Asia, Latin America
 - The African School of Physics
 - The African Physics Strategy
 - ٠. **Research visits**
 - Mentorship / coaching

2019 (9) 2022-2023 (6+) 2023-2024 (6) 2019-2023: 22 alumni

From 10 countries

Areas of concentration:

Astrophysics & cosmology,

light sources & materials

nuclear instrumentation, radionuclide production & medical physics, particle accelerators, HEP computing.

characterization, nanoscience,

BNL, 2019, 2022-2024 ASP alumni visits for research

Morocco, April & July 2024

6/24/2024

BNL Summer Lecture Series

ASP Alumni at BNL 2023-2024

Gloria Maithya (Kenya), DUNE 6 ASP alumni for the period of June 2023 - April 2024

- From Kenya, Morocco, Senegal and Togo
- 1 arrived on June 18, 2023
- \circ 4 arrived on July 31, 2023
- 1 arrived on January 21, 2024

Augustin Sokpor (Togo), LGAD

Dr. Sanae Samsam (Morocco),

Conclusions

- The Standard Model of particle physics is a very successful theory
 - Yet, there things we do not understand, e.g. the nature of Dark Matter
- The discovered Higgs boson may be used as probe or portal to "new physics"
 - By searching for BSM particles in the decays of the Higgs boson,
 e.g. H → invisible
- So far, no signal of "new physics" detected