Low Q² DAQ update

Simon Gardner

ePIC DAQ meeting 16th May 2024

Requirements

- Extend Q² acceptance
- Allow quasi real (Q²~0) physics
- Very close to beamline.
 - 2 Taggers covering different electron energies
 - Pixel based trackers with rate capability and pixel resolution to identify > 10 tracks per beam bunch (Bremsstrahlung BG)

Technology

Tracker

- Timepix4 Hybrid (ASIC+Si) + SPIDR4 readout.
 - Pixels: 55x55 um. $448 \times 512 \text{ pixels}$. Area = 6.94 cm²
 - Individual thresholds, data driven
 - Timing: < 2 ns.
 - Rates: < 5.5 MHz per 2x256 column
- Layout
 - 1 board: 6x2 Timepix4 → SPIDR4 readout.
 - 1 layer: 3 boards
 - 1 tagger: 4 layers → total of 12 boards, 144 x Timepix4

Readout and DAQ

Tracker

- Timepix4 readout SPIDR4, NIKHEF
- Digitization on ASIC. Individual thresholds. Very low noise.
- Control board, handle up to 12 Timepix4
- Data → FELIX boards / Buffering
- Buffered data filtered on coincidence with central detector

Calorimeter

- Fibres → SiPM → standard DAQ channels
- 2 x 900 channels per calorimeter = 900

Rate - PREVIOUS

High Brem BG, Non uniform distribution.

Maximum rates

• Pixel (P1) 70 kHz

2 column (C1)
 8 MHz

• Tpix4 (T1) 600 MHz 38 Gb/s

Board (B1) 1500 MHz 96 Gb/s

• Layer (L1) 2500 MHz 160 Gb/s

Q.R.

Brem.

Total integrated rates

• Tagger 1 2 GHz 130 Gb/s

■ Tagger 2 7 GHz 480 Gb/s

● Total 9 GHz 600 Gb/s

- Data buffered & filtered: need a hadron in main detector
- Trigger rate: 500 kHz: 99.4% rejection (brem only)
- Data rate (signal):4 Gb/s
- Data rate (incl BG and rand sample) <20 Gb/s To tape

Low Q² tagger rates kHz / pixel. (18x275 GeV @ 10³⁴ cm⁻² s⁻¹)

1000
1000
10-3
10-3

Rate – Plots need updating

- Previous raw rates were a factor of 17 too high, number of Bremstrahlung interactions per bunch applied twice.
- Maximum per pixel now ~4kHz

Status and plans

2 x SPIDR4 kits in Glasgow

- Jan 2024
- Timepix4 ASICS bonded to carrier boards and ready to start tests
- Once confident will visit Nikhef and discuss what we need from the SPIDR4
- Looking into data reduction with GNNs prior to main DAQ via cluster and track based rejection.
- Working on more detailed simulation of sensor response and digitization.

• Timepix4 + SPIDR4 Engineering test setup.

Timepix3 vs Timepix4

Timepix4: A 4-side tillable large single threshold particle detector chip with improved energy and time resolution and with high-rate imaging

٠.	nan improve	a chergy and	a time resolution and w	iai ingii iate iinaging
			Timepix3 (2013)	Timepix4 (2019)
Technology			130nm - 8 metal	65nm - 10 metal
Pixel Size			55 x 55 μm	55 x 55 μm
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448 3.5 x
Sensitive area			1.98 cm²	6.94 cm ²
Readout Modes	Data driven (Tracking)	Mode	TOT	and TOA
		Event Packet	48-bit	64-bit 33%
		Max rate	0.43x106 hits/mm²/s	3.58x10 ⁶ hits/mm ² /s
		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel 8x
	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-b
		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel a野文
		Max count rate	~0.82 x 10 ⁹ hits/mm ² /s	~5 x 10 ⁹ hits/mm ² /s 8x
TOT energy resolution			< 2KeV	< 1Kev
Time resolution			1.56ns	~200ps
Readout bandwidth			≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)

Xavier.llopart@cern.ch Medipix Symposium, Sept 2019

K. Heijhoff et al 2022 JINST 17 P07006