(Pre-)TDR effort Tracking progress

Barak Schmookler (UCR), Ernst Sichtermann (LBNL)

Preliminaries

Pertinent meetings:

- SVT general meetings, work-package coordination meetings, sensor designers' meetings c.f. https://indico.bnl.gov/category/496/,
- MPGD general meetings, simulation meetings, uRWELL meetings, CyMBaL meetings c.f. https://indico.bnl.gov/category/497/,
- Weekly joint track reconstruction, vertexing, and tracking working group meetings c.f. https://indico.bnl.gov/category/404/,

Of further relevance:

- Incremental Preliminary Design and Safety Review of the EIC Tracking Detectors c.f. https://indico.bnl.gov/event/21945/
- EIC R&D day c.f. https://indico.bnl.gov/event/22388/
- Past update at the February 19, 2024 TIC meeting c.f. https://indico.bnl.gov/event/21932/

Steady progress in most areas.

Recent and ongoing track reconstruction development in EICRecon

- 1. Update to initial covariance matrix in real-seeded tracking. Values placed in configuration file for easier future tuning. **PR merged**.
- 2. Move tracking EDM conversion into separate factory. **PR merged**.
- 3. Implement Acts ambiguity resolution solver in EICRecon. PR under review several updates made last week; should be merged soon.
- 4. Hit-based track to MC particle matching inside EICRecon.

>Add Geant-level hits to EICRecon output. **PR merged.**

>Add associations between Geant-level and raw tracker hits. **PR merged.**

Create direct link between track and MC particle. **Not started.**

5. Complete implementation of updated track data model, including filling of the edm4eic::TrackSeed collection. In progress.

Effect of ambiguity resolution solver

- A set of solved tracks will emerge from the Acts GreedyAmbiguityResolution algorithm.
- These solved tracks combine the input tracks which contain a minimum number of shared hits. This is important for removing duplicate seeds.
- In addition, the input tracks will be required to have a minimum of number of tracker measurement hits.

Example: reconstructed azimuthal angles for all (real-seeded) tracks in a DIS event.

30 unfiltered tracks before

ambiguity solver.

9 **solved tracks** after ambiguity solver.

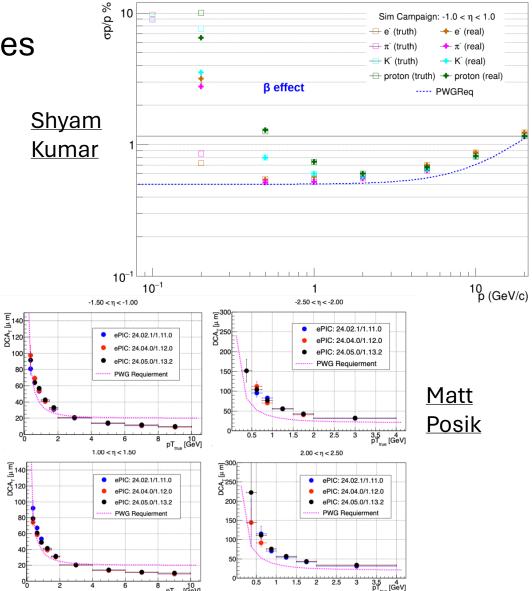
0 * -2.745423 * -2.745423 1 * -2.659463 * -2.659463 2 * -0.487999 * -2.973740 3 * -0.515227 * -0.547968 4 * -0.411117 * -0.524593 5 * 0.6830639 * -0.487999 6 * 1.2292373 * -3.030914 7 * 1.1533687 * -0.563698 8 * 1.6516475 * -0.515227 9 * - -0.377481 10 * - -0.41117 11 * -0.367529 -0.411152 13 * -0.558974 -0.515152 15 * -0.358227 16 * -0.515152 15 * -0.55163 18 * -0.514914 19 * -0.514914 19 * -0.517399 20 * * -0.483472 21 * * 0.6830639 23 * 0.6830639 -0.483472 24 * * 1.2292373 25 * * 1.6516475 27 * * 1.6516475					
1-0.487999*-2.9737403-0.515227*-0.5479684-0.411117*-0.52459350.6830639*-0.48799961.2292373*-3.03091471.1533687*-0.56369881.6516475*-0.5152279**-0.37748110**-0.4111711**-0.36752912**-0.41115213*-0.55897414*-0.51515215**16**17*-0.55116318*-0.51491419*-0.51739920**21**23*0.683063923*1.153368726*1.153347928*1.1533479	0	*	-2.745423	*	-2.745423
3 * -0.515227 * -0.524593 4 * -0.411117 * -0.524593 5 * 0.6830639 * -0.487999 6 * 1.2292373 * -3.030914 7 * 1.1533687 * -0.563698 8 * 1.6516475 * -0.515227 9 * * -0.377481 10 * * -0.367529 12 * * -0.367529 12 * * -0.515122 13 * * -0.558974 14 * * -0.558974 14 * * -0.515152 15 * * -0.515152 15 * * -0.55163 18 * * -0.514914 19 * * -0.517399 20 * * * -0.483472 21 * * * -0.4830639 23 * * 0.6830639 23 * * 1.1533687 26 * * 1.1533479 25 * * 1.1533479	1	*	-2.659463	*	-2.659463
4 * -0.411117 * -0.487999 5 * 0.6830639 * -0.487999 6 * 1.2292373 * -0.563698 7 * 1.1533687 * -0.515227 9 * * -0.515227 9 * * -0.377481 10 * * -0.367529 12 * * -0.367529 12 * * -0.58974 14 * -0.558974 14 * * -0.515152 15 * * -0.515152 15 * * -0.515152 15 * * -0.5163 18 * * -0.514914 19 * * -0.517399 20 * * -0.483472 21 * * -0.483472 22 * * 1.2292373 23 * * 1.6516475 24 * </td <td></td> <td>*</td> <td>-0.487999</td> <td>*</td> <td>-2.973740</td>		*	-0.487999	*	-2.973740
5 * 0.6830639 * -0.487999 6 * 1.2292373 * -3.030914 7 * 1.1533687 * -0.563698 8 * 1.6516475 * -0.377481 10 * -0.41117 -0.367529 12 * * -0.411152 13 * -0.558974 14 * -0.558974 14 * -0.515152 15 * -0.515152 15 * -0.358227 16 * -0.515152 15 * -0.515152 15 * -0.515152 15 * -0.514914 19 * -0.514914 19 * -0.514914 19 * -0.483472 20 * -0.483472 21 * -0.6830639 23 * 1.1533687 24 * 1.1533479 25 * 1.1533479	3	*	-0.515227	*	-0.547968
6 * 1.2292373 * -3.030914 7 * 1.1533687 * -0.563698 8 * 1.6516475 * -0.377481 10 * -0.3177481 -0.367529 12 * -0.411152 13 * -0.515227 9 * * -0.41117 11 * -0.367529 12 * -0.51512 13 * -0.558974 14 * -0.55152 15 * -0.515152 15 * -0.515152 15 * -0.515152 15 * -0.514137 17 * -0.514914 19 * -0.517399 20 * -0.483472 21 * -0.483472 22 * 0.6830639 23 * 1.1533687 26 * 1.1533687 26 * 1.1533479 28 * 1	4	*	-0.411117	*	-0.524593
7 * 1.1533687 * -0.563698 8 * 1.6516475 * -0.515227 9 * * -0.377481 10 * * -0.41117 11 * * -0.411152 13 * * -0.558974 14 * * -0.558974 14 * * -0.515152 15 * * -0.515152 15 * * -0.358227 16 * * -0.551163 18 * * -0.514914 19 * * -0.514914 19 * * -0.517399 20 * * * 21 * * 0.6830639 23 * * 0.6830639 23 * * 1.1533687 26 * * 1.1533479 25 * * 1.1533479 26 * * 1.1533479 28 * * 1.153354		*	0.6830639	*	-0.487999
8 * -0.515227 9 * -0.377481 10 * -0.41117 11 * -0.367529 12 * -0.411152 13 * -0.558974 14 * -0.558974 14 * -0.558974 15 * -0.515152 15 * -0.358227 16 * * 17 * -0.551163 18 * -0.51163 18 * -0.517399 20 * -0.481105 21 * -0.483472 22 * 0.6830639 23 * * 21 * 1.2292373 25 * * 26 * 1.1533687 26 * 1.1533479 28 * 1.1533479		*	1.2292373		-3.030914
9 * -0.377481 10 * -0.411117 11 * -0.367529 12 * -0.411152 13 * -0.558974 14 * -0.515152 15 * -0.367529 16 * -0.515152 15 * -0.358227 16 * -0.411137 17 * -0.551163 18 * -0.514914 19 * -0.517399 20 * -0.481105 21 * -0.483472 22 * 0.6830639 23 * 0.6830969 24 * 1.2292373 25 * 1.1533687 26 * 1.6516475 27 * 1.1533479 28 * 1.1533534	7	*	1.1533687		-0.563698
10*-0.41111711*-0.36752912*-0.41115213*-0.55897414*-0.51515215*-0.35822716*-0.41113717*-0.55116318*-0.51491419*-0.51739920*-0.48110521*-0.48347222*0.683063923*0.683096924*1.229237325*1.153368726*1.651647527*1.153347928*1.153354	8	*	1.6516475	*	-0.515227
11 * -0.367529 12 * -0.411152 13 * -0.558974 14 * -0.515152 15 * -0.358227 16 * -0.411137 17 * -0.551163 18 * -0.514914 19 * -0.517399 20 * -0.481105 21 * -0.483472 22 * 0.6830639 23 * 0.6830639 23 * 1.2292373 25 * 1.1533687 26 * 1.6516475 27 * 1.1533479 28 * 1.153354	9	*		*	-0.377481
12 * -0.411152 13 * -0.558974 14 * -0.515152 15 * -0.358227 16 * -0.411137 17 * -0.551163 18 * -0.514914 19 * -0.517399 20 * -0.481105 21 * -0.483472 22 * 0.6830639 23 * 0.6830969 24 * 1.2292373 25 * 1.6516475 27 * 1.1533479 28 * 1.1533534	10	*		*	-0.411117
13 **-0.55897414 **-0.51515215 *-0.35822716 *-0.41113717 *-0.55116318 *-0.51491419 *-0.51739920 *-0.48110521 *-0.48347222 *0.683063923 *0.683063924 *1.229237325 *1.153368726 *1.651647527 *1.153347928 *1.153354	11	*			-0.367529
14*-0.53897414*-0.51515215*-0.35822716*-0.41113717*-0.55116318*-0.51491419*-0.51739920*-0.48110521*-0.48347222*0.683063923*0.683063923*1.229237325*1.153368726*1.651647527*1.153347928*1.1533534	12	*		*	-0.411152
15*-0.35822716*-0.41113717*-0.55116318*-0.51491419*-0.51739920*-0.48110521*-0.48347222*0.683063923*0.683096924*1.229237325*1.153368726*1.651647527*1.153347928*1.1533534	13	*		*	-0.558974
16 * -0.411137 17 * -0.551163 18 * -0.514914 19 * -0.517399 20 * -0.481105 21 * -0.483472 22 * 0.6830639 23 * 0.6830639 24 * 1.2292373 25 * 1.1533687 26 * 1.6516475 27 * 1.1533479 28 * 1.1533534	14	*		*	-0.515152
17*-0.55116318*-0.51491419*-0.51739920*-0.48110521*-0.48347222*0.683063923*0.683096924*1.229237325*1.153368726*1.651647527*1.153347928*1.1533534	15	*		*	-0.358227
18 * -0.531403 18 * -0.514914 19 * -0.517399 20 * -0.481105 21 * -0.483472 22 * 0.6830639 23 * 0.6830969 24 * 1.2292373 25 * 1.1533687 26 * 1.6516475 27 * 1.1533479 28 * 1.1533534	16	*		*	-0.411137
19 * -0.517399 20 * -0.481105 21 * -0.483472 22 * 0.6830639 23 * 0.6830969 24 * 1.2292373 25 * 1.1533687 26 * 1.6516475 27 * 1.1533479 28 * 1.1533534	17	*		*	-0.551163
20 * * -0.481105 21 * -0.483472 22 * 0.6830639 23 * 0.6830969 24 * 1.2292373 25 * 1.1533687 26 * 1.6516475 27 * 1.1533479 28 * 1.1533534	18	*		*	-0.514914
21 * * -0.483472 22 * 0.6830639 23 * 0.6830969 24 * 1.2292373 25 * 1.1533687 26 * 1.6516475 27 * 1.1533479 28 * 1.1533534	19	*		*	-0.517399
22 * * 0.6830639 23 * 0.6830969 24 * * 25 * 1.1533687 26 * 1.6516475 27 * * 28 * 1.1533534	20	*		*	-0.481105
23 * * 0.6830969 24 * * 1.2292373 25 * * 1.1533687 26 * * 1.6516475 27 * * 1.1533479 28 * * 1.1533534	21	*		*	-0.483472
24 * * 1.2292373 25 * * 1.1533687 26 * * 1.6516475 27 * * 1.1533479 28 * * 1.1533534	22	*		*	0.6830639
25 * * 1.1533687 26 * * 1.6516475 27 * * 1.1533479 28 * * 1.1533534	23	*		*	0.6830969
26 * * 1.6516475 27 * * 1.1533479 28 * * 1.1533534	24	*		*	1.2292373
27 * 1.1533479 28 * 1.1533534	25	*		*	1.1533687
28 * * 1.1533534	26	*		*	1.6516475
20 1.1555554	27	*		*	1.1533479
20 * * 1 6516694	28	*		*	1.1533534
29 1.0510084	29	*		*	1.6516684

Effect of ambiguity resolution solver

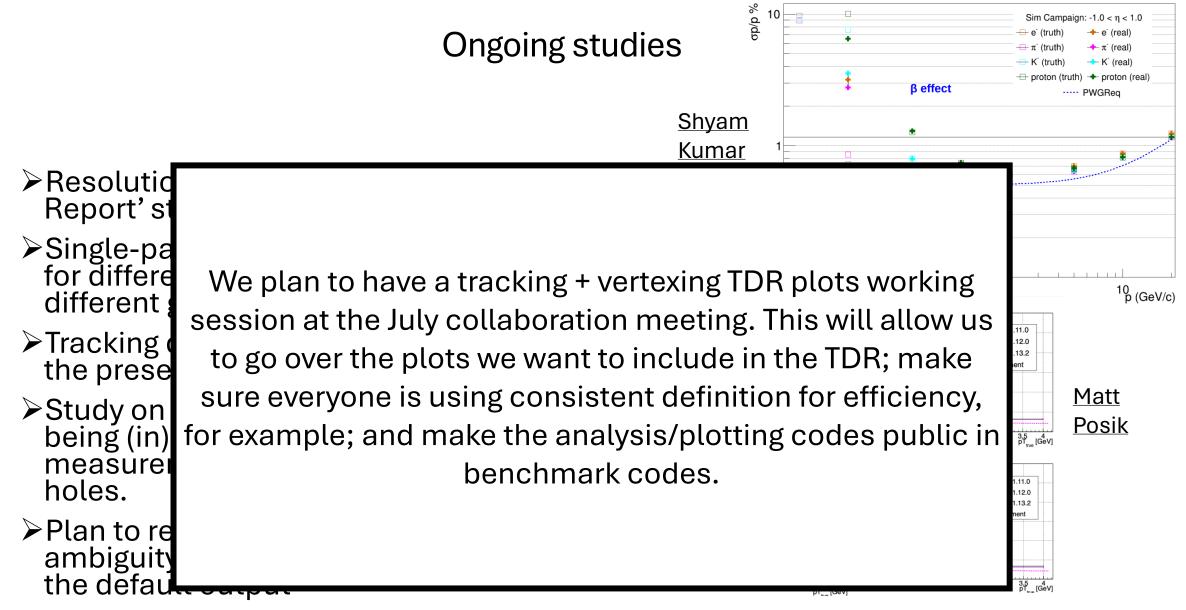
- A set of solved tracks will emerge from the Acts GreedyAmbiguityResolution algorithm.
- These solved tracks combine the input tracks which contain a minimum number of shared hits. This is important for removing duplicate seeds.
- In addition, the input tracks will be required to have a minimum of number of tracker measurement hits.

Example: reconstructed azimuthal angles for all (real-seeded) tracks in a DIS event.

30 **unfiltered tracks** before ambiguity solver.


9 **solved tracks** after ambiguity solver.

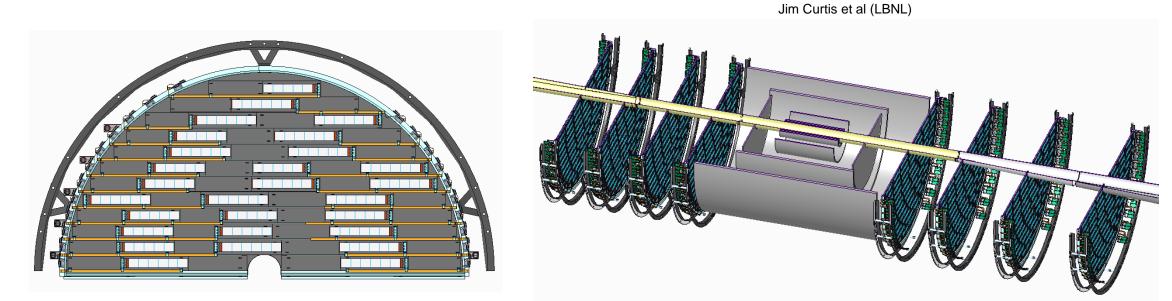
Tracks from duplicate seeds are removed.


0	*	-2.745423	*	-2.745423	*
1	*	-2.659463	*	-2.659463	*
2	*	-0.487999	*	-2.973740	*
3	*	-0.515227	*	-0.547968	*
4	*	-0.411117	*	-0.524593	*
5	*	0.6830639	*	-0.487999	*
6	*	1 2202272	*	-3.030914	*
7	*	1.1533687	*	-0.563698	*
8	*	1.6516475	*	-0.515227	*
9	*		*	-0.377481	*
10	*		*	-0.411117	*
11	*		*	-0.367529	*
12	*		*	-0.411152	*
13	*		*	-0.558974	*
14	*		*	-0.515152	*
15	*		*	-0.358227	*
16	*		*	-0.411137	*
17	*		*	-0.551163	*
18	*		*	-0.514914	*
19	*		*	-0.517399	*
20	*		*	-0.481105	*
21	*		*	-0.483472	*
22	*		*	0.6830639	*
23	*		*	0.6830969	*
24	*		*	1 2202272	*
25	*		*	1.1533687	
26	*		*	1.6516475	*
27	*		*	1.1533479	>
28	*		*	1.1533534	,
29	*		*	1.6516684	*

Ongoing studies

- Resolution studies/plots in 'Yellow Report' style
- Single-particle tracking efficiency for different particle types and different generation vertex positions
- Tracking detector performance in the presence of background
- Study on whether tracking hits are being (in)correctly classified as measurements, outliers and/or holes.
- Plan to repeat all these studies once ambiguity solver results are made the default output

Possible impact due to mismatch between Acts material map and Geant-level geometry. Need a better way to ensure consistency when running simulations.



Possible impact due to mismatch between Acts material map and Geant-level geometry. Need a better way to ensure consistency when running simulations.

SVT

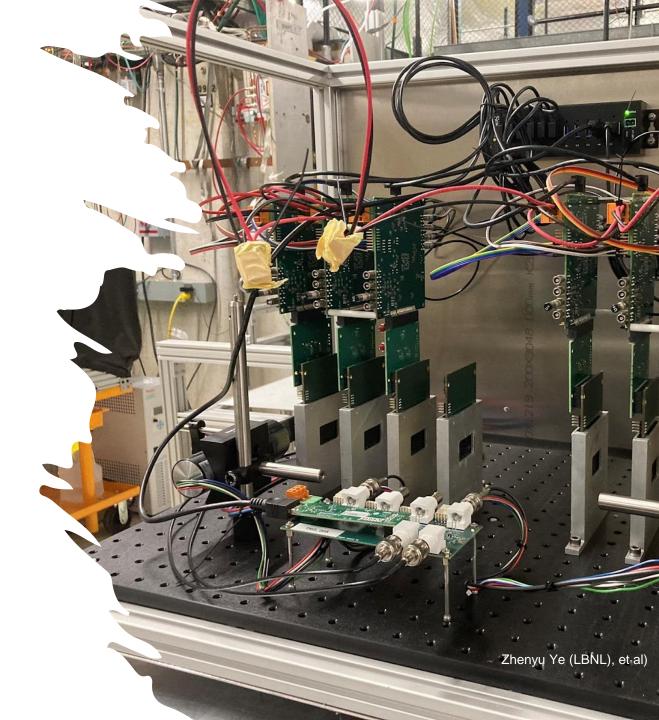
Progress on service propagation in simulations, for SVT and other detectors – Update to SVT service model itself is a work-in-progress, Ongoing work also towards a more realistic SVT detector description in simulations – important e.g. for small-x, Q²

Steady progress on CAD design:

Shown here is progress on the disks – likewise, considerable progress is being made on the inner and outer barrel,

See also contributions to the 12th Forum on Tracking Detector Mechanics -- https://indico.cern.ch/event/1336746/ -- and ePIC Satellite event.

SVT


Thinned dummy sensors of various kinds (ITS3-like, EIC-LAS like, capton embedded, heaters) being ordered for thermo-mechanical tests and prototyping, hopefully starting over Summer

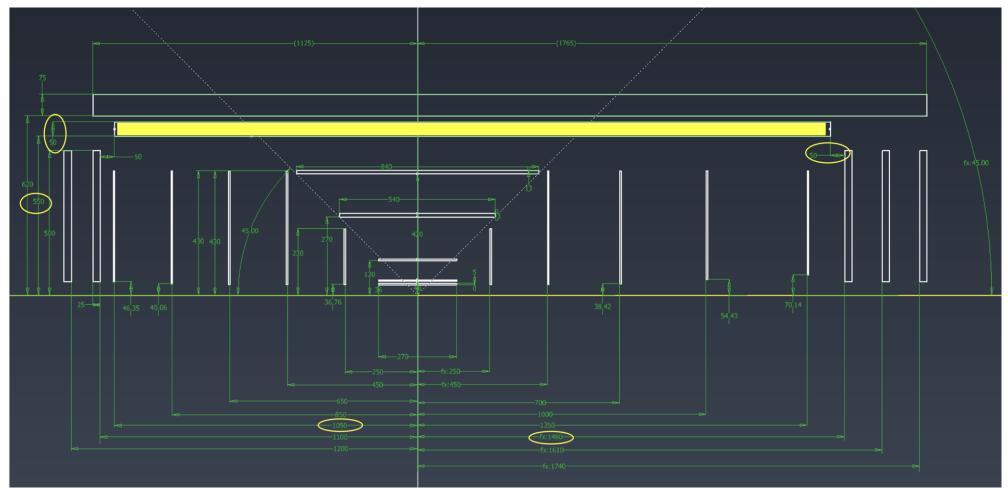
Specifications Ancillary IC largely defined and first submission of test structures for negative bias voltage generator and test structures aimed for September 2024

(Very) Recent beam-test at FNAL with a telescope of ITS3 ER1 "baby-MOSS" sensors – c.f. figure on the right

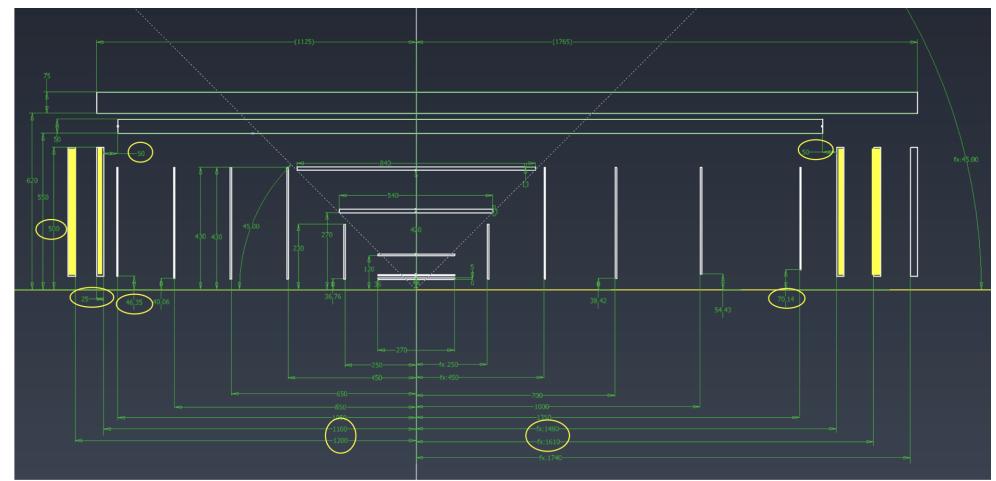
anticipated to give insight into cluster-size versus incident beam-angle, a target figure for the (pre-)TDR

(Very) Recent Irradiation test at LBNL BASE facility of singleevent latch-up cross-section as a function of position on the sensor.

SVT

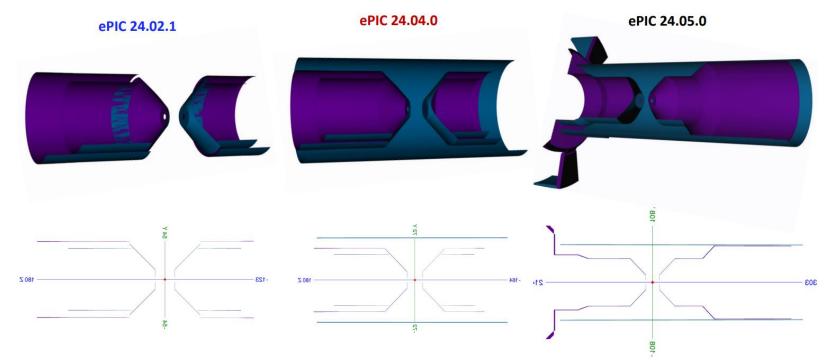

Preparations for IpGBT and VTRx+ final design review next week in progress (Jo Schambach et al, ORNL),

Initial sample of industrially produced FPC in Aluminum – albeit adapted from a circuit not specific to SVT – in hand and being tested (Zhenyu Ye et al, LBNL),


Lots of other ongoing work, e.g. on powering (James Glover, Birmingham) and other areas not listed here.

Likely to aim for a smaller (by comparison to that at the ANL meeting) workfest at the Lehigh meeting.

Envelopes and dimensions revisited – c.f. <u>https://indico.bnl.gov/event/22417/</u> (Roland Wimmer, BNL)


Envelopes and dimensions revisited – c.f. <u>https://indico.bnl.gov/event/22417/</u> (Roland Wimmer, BNL)

Envelopes and dimensions revisited – c.f. https://indico.bnl.gov/event/22417/ (Roland Wimmer, BNL)

Det.	Zmin [mm]	Zmax [mm]	Rmin [mm]	Rmax [mm]	
CyMBaL	-1050	1430	550	600	
uRWell-ECT (LD 1)	-1125	-1100		500	
uRWell-ECT (LD 2)	-1225	-1200		500	
uRWell-ECT (HD 1)	1480	1505		500	
uRWell-ECT (HD 2)	1610	1635		500	

Geometry update and service description (all; not only MGPD) eflected in simulations – c.f. <u>https://indico.bnl.gov/event/23630/</u> (Matt Posik, Temple)

Initial result updates on angular and position resolutions into PID Further refinement to follow.

MPGD groups are likewise proposing a workfest at the Lehigh Collaboration meeting this Summer.

Closing Comments

Steady progress in many areas, e.g.

Simulation software – ambiguity solver, data model, detector description

Instruments – SVT ITS3 ER1 beam and irradiation tests, SVT ancillary IC, FPC, CAD, readout, MPGD envelopes, ...

To state the obvious, lots of work remains.

Groups are proposing workfests for the Lehigh Collaboration Meeting in Summer.

Not explicitly covered here, e.g.

Vertex study updates – c.f. https://indico.bnl.gov/event/22710/ (Sooraj Radhakrishnan KSU, et al)