

The FCFD ASIC for Detectors with AC-LGAD Strips

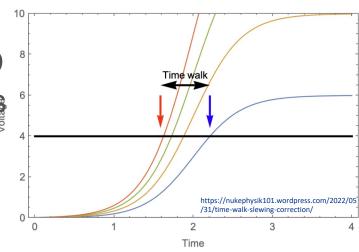
Artur Apresyan **EIC PDR for Electronics & DAQ**

Timing for barrel Time-of-Flight detector

- Focus of this talk is on the development of the readout ASIC for the barrel section of the TOF
- Design is based on AC-LGAD sensors with 500 um pitch

Constant Fraction Discriminator ASIC (FCFD)

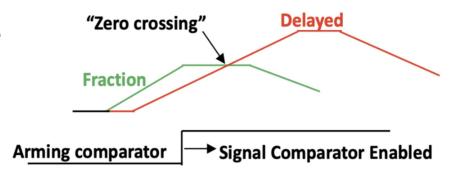
- A robust fast-timing measurement technique for LGADs
 - Easy to use and stable: no corrections, or calibrations and threshold adjustments
- CFD approach achieves better performance, especially for low S/N systems, such as LGADs (NIM A 940 (2019), pp 119-124)
 - CFD offers significant reduction in noise, as demonstrated in TOFHIR ASIC for CMS barrel timing detector
 - Improvement in the time resolution by x3.5 in TOFHIR
 - CFD-based readout is much simpler in operation and maintenance
 - No need to maintain the calibration and monitoring system, computing workflows, database maintenance, payloads, etc...
- Power consumption for analog front-end LE and CFD comparable
 - Consumption for the digital parts is expected to be low, completed blocks exist


FCFD development history

- The first (FCFDv0) version was designed, produced and tested with DC-LGAD sensors
 - Developed in TSMC 65 nm technology node
 - Excellent performance demonstrated with charge injection, laser and beta source
- The next version (FCFDv1) was optimized with EIC sensor specifications
 - In close collaboration with the EIC detector experts and AC-LGAD developers
 - Specifications for sensors: 1 cm long AC-LGAD, 500 um pitch, 50 um thickness. Estimated capacitance ~5-10 pF

FCFD Readout for Timing Detectors

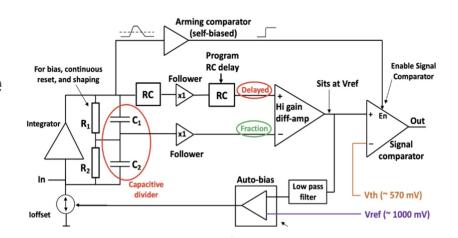
- Time-walk effect is well known & must be corrected for best performance
- Conventionally addressed with online or offline corrections via some type of LUT
- A hardware-enabled correction via CFD built into the readout ASIC design offers much simpler solution



01/09/2024

Fermilab CFD Chip Design

- Primary application is (AC-)LGAD sensors for MIP signals
- But can be used for many types of precision timing detectors
- Main features of the CFD are:
 - Integrator & Follower to create the "fraction" signal
 - Comparator for "arming" and timestamping

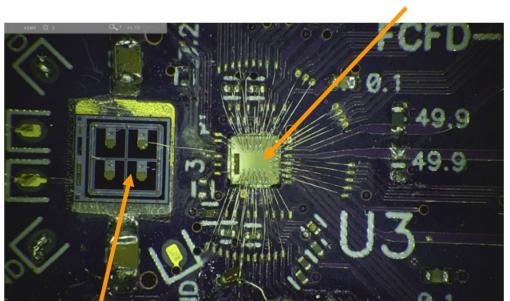

A. Apresyan et. al, **NIM A 1056, 2023, p168655** https://doi.org/10.1016/j.nima.2023.168655

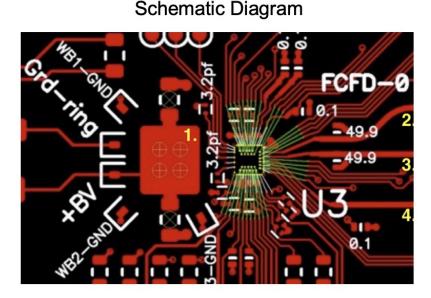
01/09/2024

Fermilab CFD Chip Design

- Primary application is (AC-)LGAD sensors for MIP signals
- But can be used for many types of precision timing detectors
 - Main features of the CFD are:
 - Integrator & Follower to create the "fraction" signal
 - Comparator for "arming" and timestamping

A. Apresyan et. al, **NIM A 1056, 2023, p168655** https://doi.org/10.1016/j.nima.2023.168655

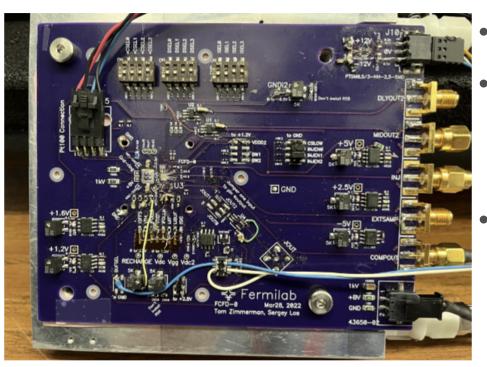



01/09/2024

FCFD Chip Prototype v0

First prototype designed and fabricated in 2021 & tested in 2022

FCFDv0 ASIC



LGAD Sensor

FCFD Chip Prototype v0

First prototype designed and fabricated in 2021 & tested in 2022

- Full test-board
- Key testing features:
 - Internal charge injection with 3-26 fC dynamic range
- Switch to enable spy on analog signal

Multi-Source Signal Testing Setup

- FCFD v0 performance evaluated using multiple types of signals:
 - Charge-injected signal
 - Picosecond Laser signal
 - Radioactive Source signal
 - Proton Beam signal

Charge Injection

- Inject range of signal sizes from 3-26 fC using built-in mechanism
- Time reference is clock signal used to trigger internal charge injection
- Injected waveforms are based on LGAD signals from simulation (confirmed by past measurements)
- Output waveforms look like this:
 - Spy waveform is small fractional copy of original signal
 - Discriminator waveform is CFD output and used for time-stamping

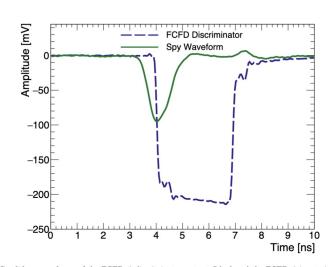
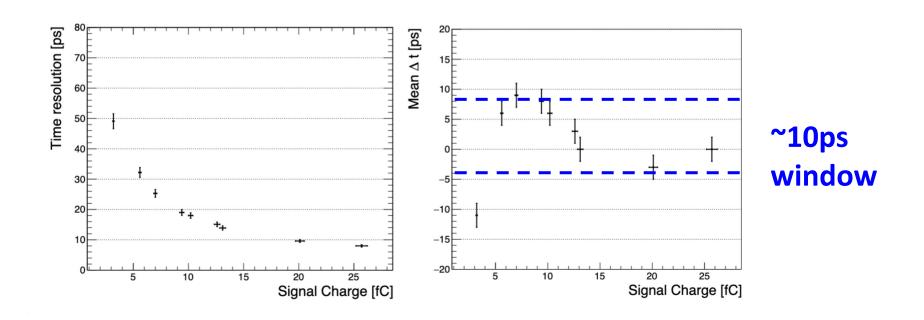
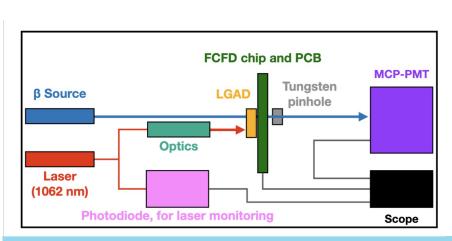
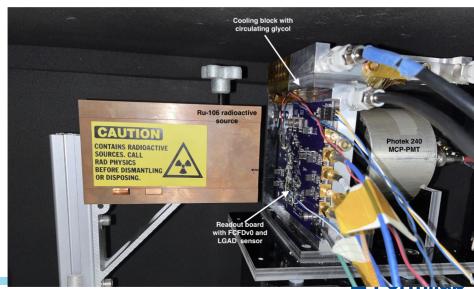



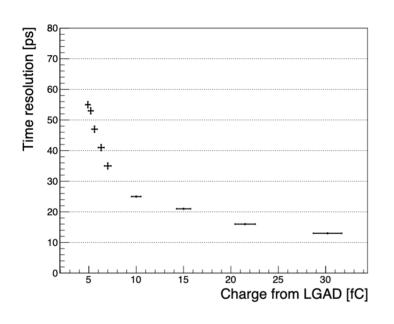
Figure 9: Candidate waveforms of the FCFDv0 discriminator output (blue) and the FCFDv0 input signal spy (green).

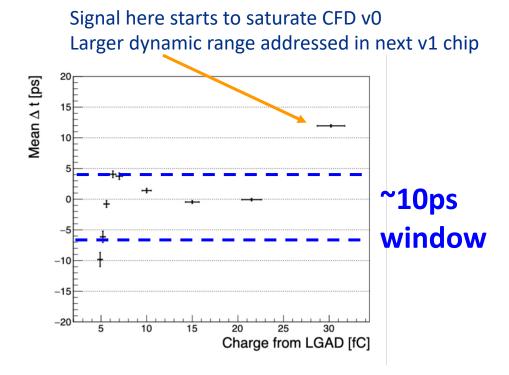
Charge Injection


- Time resolution performance as expected
- For largest signal (before saturation) get ~8ps time resolution
- Time walk effect is reduced from 100s of ps to a ~10ps window



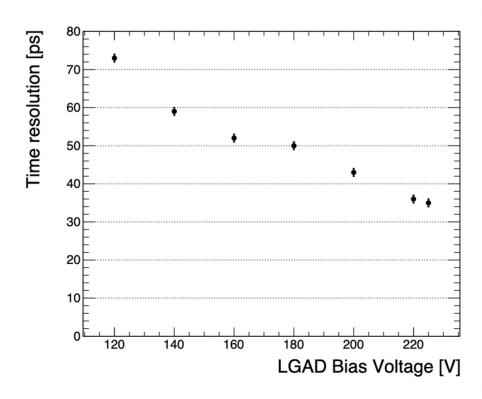
Picosecond Laser & Beta Source Setup


- Dark box with motorized stages, enabling laser injection and beta source
- Picosecond Laser trigger signal serves as time reference
- Collimator and MCP time reference detector ensures straight trajectories: get beta rates of about 2-3Hz at best alignment
- Temperature maintained at 20C by chiller and cooling block



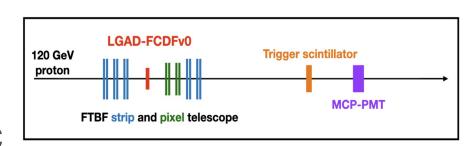
Picosecond Laser Measurements

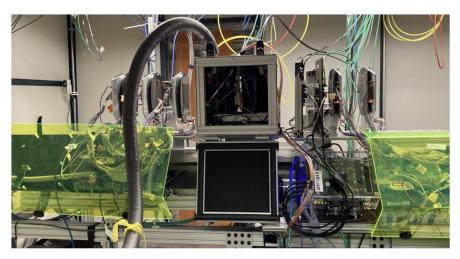
Laser measurements confirm similar performance as charge injection



Beta Source Measurements

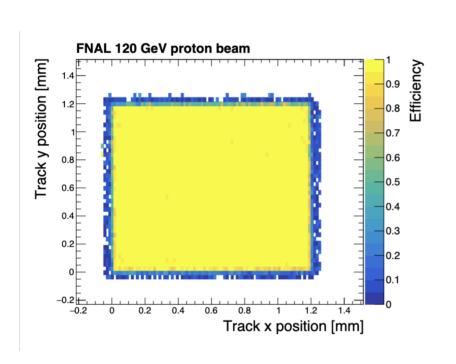
Similar performance is also confirmed with beta source

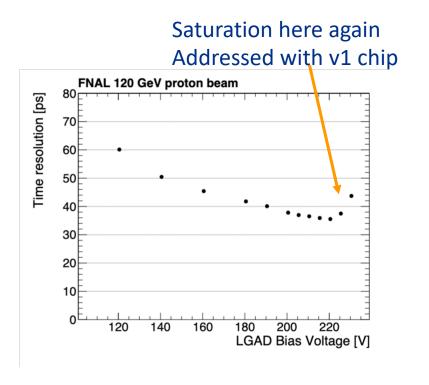

The measured time resolution is consistent with a 8-10 ps contribution from the CFD chip, accounting for time jitter of LGAD sensor itself and imperfect collimator,



Proton Beam Measurements

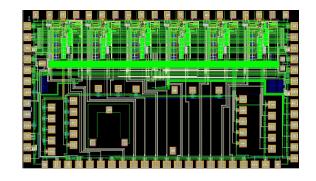
- Use Fermilab Testbeam Facility to test CFD chip with 120 GeV protons
- MCP-PMT used as time reference detector
- Temperature maintained at 20C
- Tracking telescope used to measure hit positions and efficiency

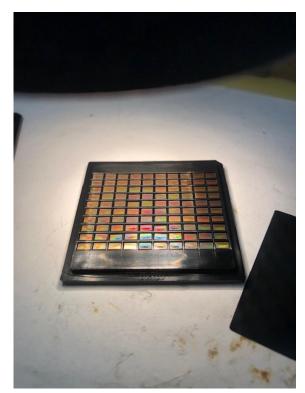




Proton Beam Measurements

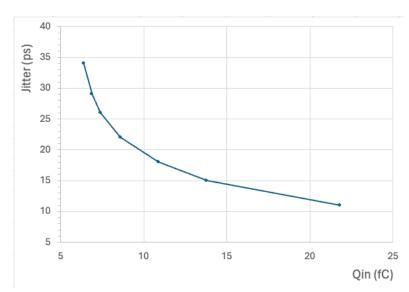
- 100% Efficiency is maintained over full LGAD pixel sensor area
- Time resolution performance consistent with Beta Source measurement





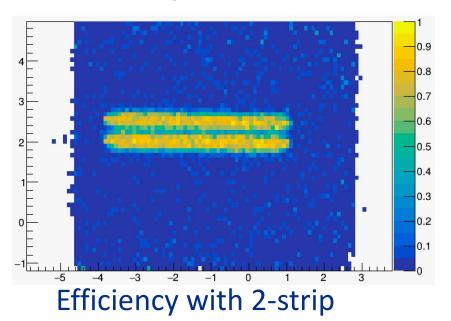
FCFDv1 status

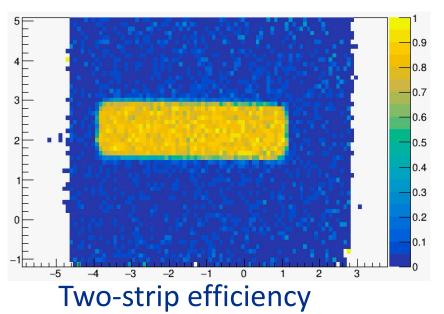
- Six-channel FCFDv1 submitted Sep. 2023
 - Wider dynamic range,
 - Sensitivity to smaller signals
 - Includes signal amplitude measurement for position measurement
- Received the chip back from TSMC in Jan 2024
 - Testing on bench started immediately
 - Preparations for test beam in Spring 2024



Status and Next plans

- FCFDv1 chip is now being tested
 - Measurements with internal charge injections performed with an LGAD-like signal being injected.
 - With input capacitance ~3.5 pF we achieve around 11 ps time resolution
 - The analog output works linearly over the range of input charge from 7 fC to 60 fC, the discriminator flip time output stays constant within around 10 pS


Jitter measurements with 3.5 pf input capacitance and charge injection


- Our measurements of the AC-LGAD strip sensors showed the complex CRnetwork which complicates operation of the ASIC
 - Additionally, the capacitance for some of the sensors is a lot larger than we originally specified
 - Hamamatsu 5 mm E-type strip sensors behave the best so far, and we have adapted the readout board for this sensor

FCFDv1 test beam results

- Testing in the Fermilab beam this week
 - Connected to a 5 mm strip AC-LGAD sensor, 500 μm pitch, 50 μm thickness
 - Main goals to measure timing and position resolution with particles
- Optimizing the readout board grounding, power supplies, noise
 - Two-strip efficiency demonstrated to be 100%
 - Continuing the characterization of the ASIC and timing performance, results soon

Development plans in 2024 and 2025

- Complete the testing of FCFDv1
 - Characterize the system performance for timing and position measurements using AC-LGAD strip-sensors
 - Initial tests showed new features of AC-LGAD sensors that impact performance
 - Would like to re-optimize the chip with the final-spec AC-LGAD parameters as tested with FCFDv1 version, for a minor revision FCFDv1.1
- Next focus on the full chip: full-size FCFD v2
 - Finalize the geometry and sensor key parameters (strip length, sheet resistance and thickness)
 - Complete ASIC with readout that would interface with the EIC experimental DAQ
 - Implement the interfaces with RDO, comments on rad-hardness and power consumption
- The final ASIC to be produced and tested during FY25 ♣ Fermilated 101/09/202 A. Apresyan I EIC PDR for Electronics & DAQ

Summary

