

Support from DOE/eRD109

The EICROC Project

Objective: **Development** and **characterization** of an **ASIC EICROC (32 x 32)** able to read out the new generation of pixelated (500 x 500 μm²) silicon sensors: **AC-LGAD** (**Low-G**ain **A**valanche **D**iode) coupled **AC** for the **Electron Ion Collider** (EIC)

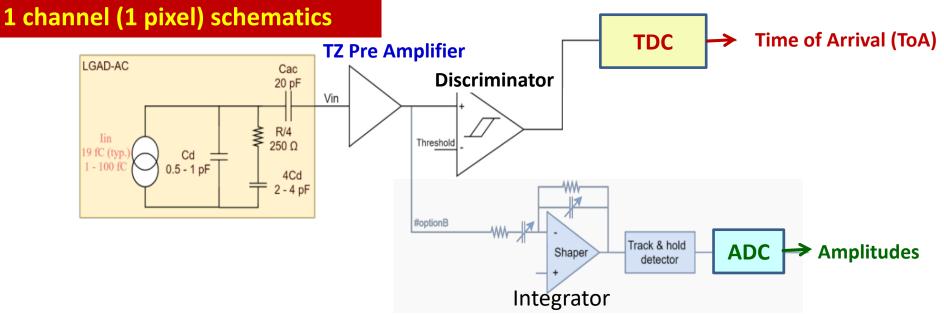
1st intention: optimized for Far Forward detectors: the Roman Pots

<u>Perspectives:</u> to read out ALL (pixelated 0.5 x 0.5 mm²) AC-LGAD sensors implemented in other ePIC detectors, e.g. OMD, Forward TOF, pfRICH, hpDIRC.

Stepping up through succesive ASIC iterations to control performances fulfilling ePIC detector requirements

EICROCO prototype (16 channels; 4 x 4): under characterization since mid '23

EICROCO requirements and design: 16 channels (4x4)


Requirements:

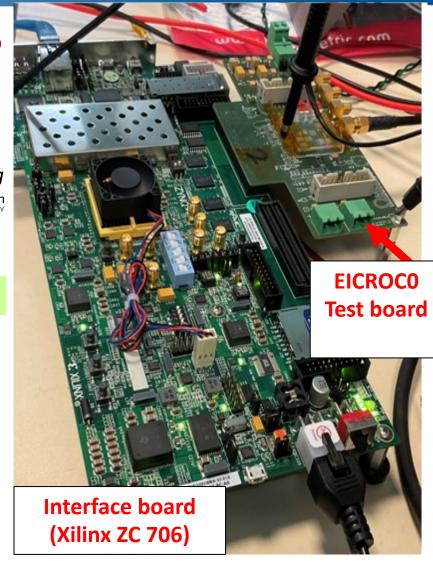
- pixel size **0.5** x **0.5** mm² (HGTD **1.3**x**1.3** mm²)
- low power consumption < 2 mW/channel
- low jitter ~ 20 ps
- low noise ~ 1 mV/channel
- sensitivity to low charge (2 fC)
- time resolution: 30 ps
- spatial resolution: **50 microns**

Charge sharing studies (simulation + β source w/ ALTIROC1_v2)

- TZ Pre Amplifiers from ALTIROC (ATLAS/HGTD)
- 10 bit **TDC** from HGCROC (CMS, CEA/Irfu/DEDIP)
- 8 bit ADC for time-walk correction (AGH Krakow, adapted from HGCROC)

Compared to ALTIROC (ATLAS/HGTD), ToT TDC (non-linear behavior versus the deposited charge) replaced by an ADC

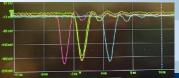
EICROCO Status (1/3)



EICROCO test bench operational at IJCLab since mid '23

- ✓ I²C communication (firmware + software developments)
- ✓ Data stream written/read
- ▼ EICROCO DC levels
- ✓ Discri. threshold exploration
- ✓ EICROCO charge injection system (0 to 25 fC)
- ✓ <u>EICROCO decoding</u> (TDC, ADC) Firmware + software
- **✓ External trigger**: signal directly injected into TDC

Additional EICROC0 test benches operational at OMEGA, CEA/Irfu, BNL and Hiroshima University

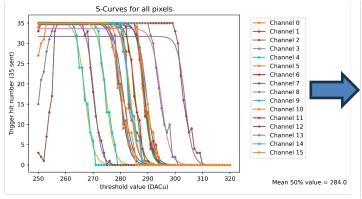

EICROCO Technical documentation

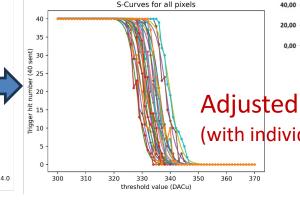
https://gitlab.in2p3.fr/verplancke/eicroc0

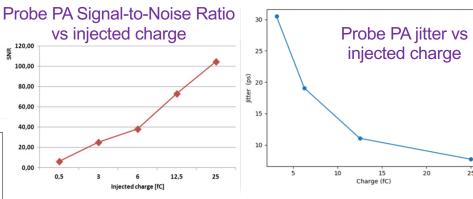
Developed and maintained by Adrien Verplancke (OMEGA)

- Firmware
 - New version implemented ✓
 - Scripts corrected to work with new firmware ✓
- Code development for new firmware
 - Config files, test scripts, data processing scripts ✓
 - Code that allows to plot S-Curves, TDC, ADC, Hit automatically ✓
 - Uploaded on GitLab ✓
- Documentation write-up (updated over time)
 - User guide ✓
 - Code guide √
 - Datasheet
 - Uploaded on GitLab ✓
- Tests on ASIC with new firmware and scripts
 - S-Curves ✓
- New boards (10 PCBs) have been produced and assembled
 - Measurements on-going

Status of EICROCO characterization

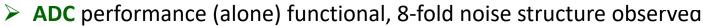


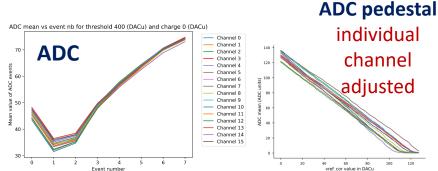



Characterization of boards w/ EICROCO only

> TZ Pre Amplifier output signals

- SNR > 70 for 12.5 fC input; SNR > 6 for 1 fC input)
- Jitter evaluation: $< 20 \text{ ps } (\ge 6 \text{ fC})$; 8 ps (25 fC)
- Discriminator efficiency versus threshold (« S-curve »)



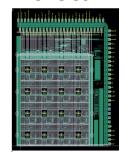


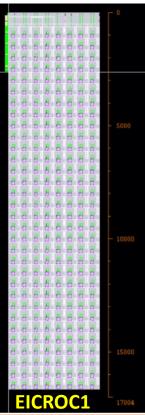
(with individual channel threshold)

- quantification step (~25 ps) in fair agreement with design
- observation of a large noise coupled to 160 MHz clock
- Time of Arrival resolution estimated to 14 ps (25 fC)

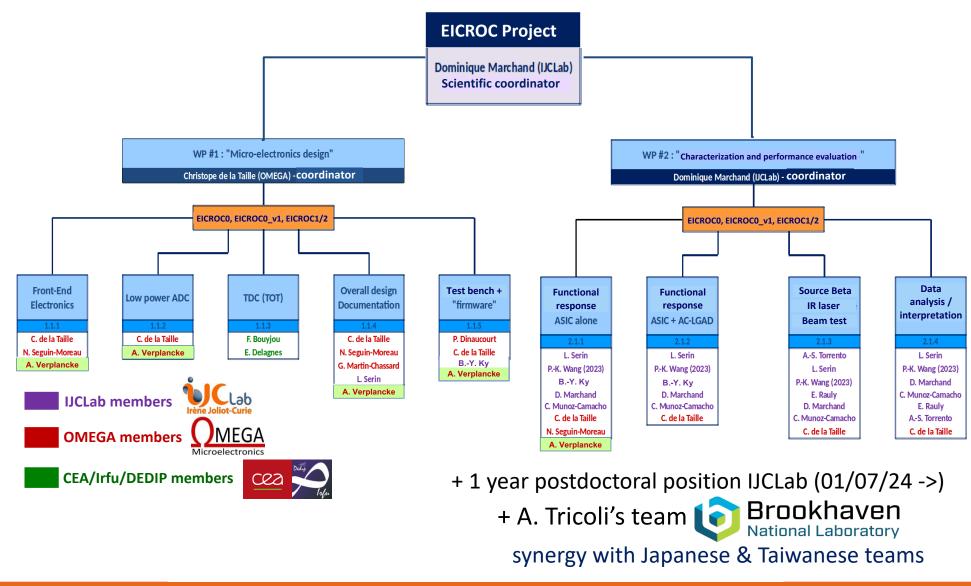
Status:

- Individually each component shows performance in agreement with design
- > Investigation of noise / clock couplings (preventing us to fully exploit TDC & ADC data) on-going
- **Board with AC-LGAD sensor:** investigation of oscillation origin when > 2 Probe PA channels

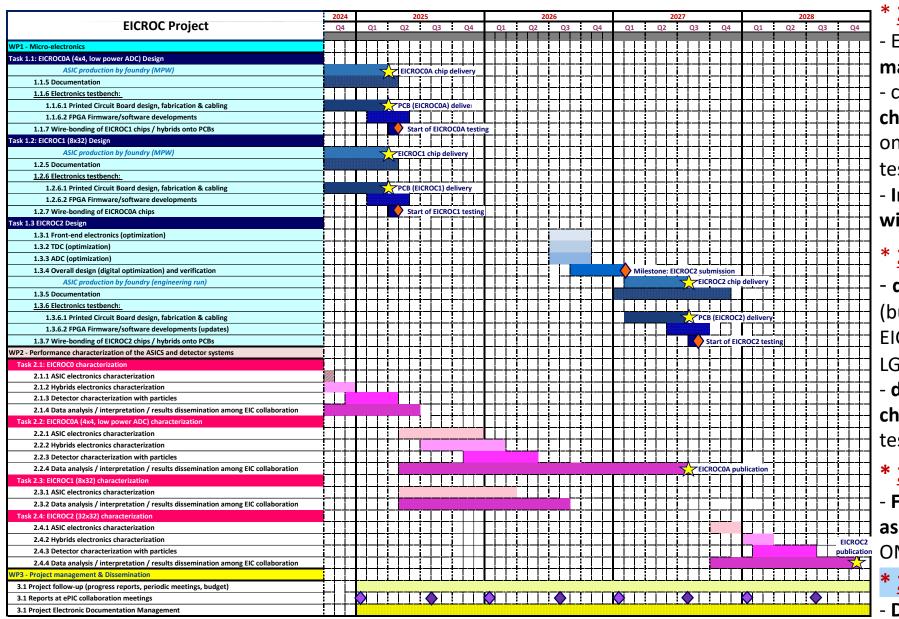

EICROC Project Overview


- EICROCO is a testbeam prototype => sensor characterization
 - Triggered readout, all data shipped out: 16 ch * 8 samples ADC + TDC
 - Present power ~2 mW/ch + 4*20 mW « analog probe preamp »
 - Status : measurements in progress
 - ADC power + shaper/driver to be reduced from ~1 mW to 100 μW/ch => EICROCOA
 - EICROCOA: simulations in progress

Power dissipation concern:


- * For 32x32 channels (1024 channels) ~ 1 W per chip
- ➤ **Heat flow study** to be performed at IJCLab to determine best cooling option to operate under 30° C in vacuum
 - EICROC1 will address larger dimensions 8x32
 - Address floor planning and power distribution
 - Selective readout : hit + 9 neighbouring channels
 - Status: layout started based on EICROCO, adding more testability
 - Still EICROCO-like readout
 - EICROC2 final size : 32x32

EICROCOA



EICROC Project: Timeline

- * 2027-2028:
- EICROC2 ASIC + PCBs
 mass production,
- chip/board quality
 characterization based
 on a dedicated
 testbench,
- Implementation within EIC DAQ system
- * 2028-2029:
- detector assembly (bump-bonding of EICROC2 ASIC with AC-LGAD sensors)
- detector performance characterization at a testbeam facility.
- * <u>2029 :</u>
- Full detector assembly (Roman Pots/ OMD, Fw TOF, ...)
- * <u>2030 :</u>
- Detector installation

EICROC Project: Quality Assessment & Control

- Quality Assessment:
 - Radiation tolerant design (TID, SEEs) based on designs for HL-LHC (200 Mrad, 1E13h/cm²/yr)
 - Digital on top (DoT) design for EICROC2 to guarantee timing closure of digital signals (as in ALTIROC)
 - Validation of interface to DAQ with CALOROC
 - Tests on testboards and testbeam
- Quality Control:
 - Experience at IJCLab on wafer test with automated probe station (picture of ALTIROC to be added)

EICROC Project summary & Perspectives

> Design of an updated PCB (improved testability, grounds); 10 pieces

- Cabled at IJCLab
- EICROCO wire-bonded onto updated PCB (IPHC, France): 2 boards (April '24)
- Characterization of electronics responses (PA, TDC, ADC) on-going
- Wire-bonding of an AC-LGAD sensor (IPHC France) by end of June '24
- Beta Source (evaluation of charge sharing), IR laser (evaluation of spatial resolution)

Perspectives:

- EICROCO bump-bonded to an AC-LGAD sensor (to be provided by BNL)
- Wire-bonding of hybrids onto uodated PCBs (IPHC, prestation)
- Characterization of electronics responses (PA, TDC, ADC)
- Beta Source (evaluation of charge sharing), IR laser (evaluation of spatial resolution)
- Test beam

Next foreseen ASIC iterations:

- **EICROCOA**: 4x4 (idem EICROCO) including 8-bit low power ADC
- **EICROC1**: 8x32 pads to study floor planning, ground distribution

Design underway
Submission Autumn
'24

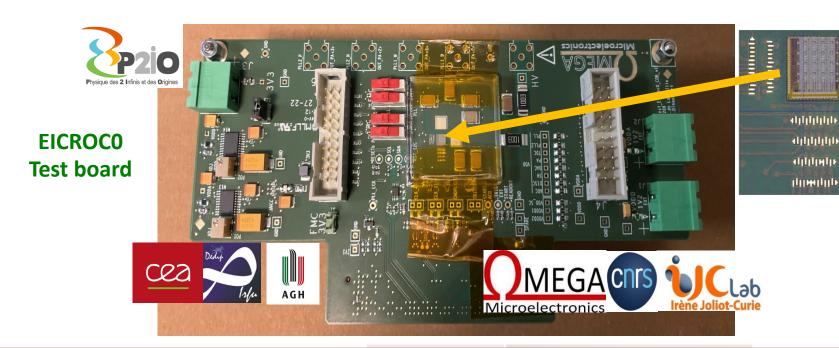
Thank you for your attention

The EICROC Project French team:

F. Bouyjou, S. Conforti, E. Delagnes, P. Dinaucourt, F. Dulucq, B.-Y. Ky, C. de La Taille, D. Marchand, C. Munoz, N. Seguin-Moreau, L. Serin, A. Verplanck

Support from DOE/eRD109

BACKUP



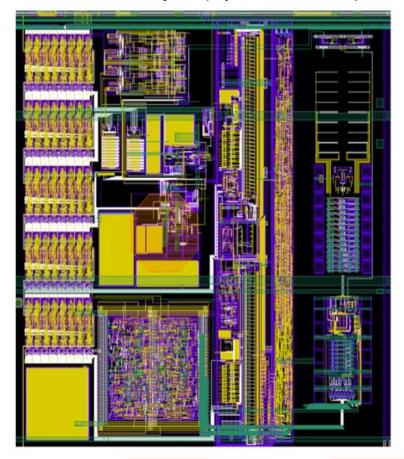
EICROCO: EIC Roman Pots 4x4 AC-LGAD readout test chip

- ➤ Submitted through a Multi Project Wafer (130 nm CMOS technology) in March 22 EICROC0 chips delivered mid-July 22
- ➤ **Test board** (PCB) designed by OMEGA, 10 pieces **delivered end of July 22** test board partially cabled by IJCLab
- ➤ Wire-bonding of EICROC0 to test boards by BNL collaborators
- ➤ Delivery at IJCLab of 3 test boards w/ EICROC0 chip in Oct. 22
- ➤ Interface board (Xilinx ZC 706): (I²C communication)firmware/software developments (IJCLab)

EICROCO chip

EICROCO: overview

- ➤ High speed TZ PA and discriminator (from ALTIROC)
- ➤ I²C slow control (from CMS HGCROC)
- ➤ 8 bits 40 MHz ADC (adapted from HGCROC 10 bits ADC, M. Idzik et al., AGH Krakow)
- ➤ Digital readout FIFO (depth 8, 200 ns)
- > 10 bits **TDC** (TOA) designed by **CEA Irfu/DEDIP**:

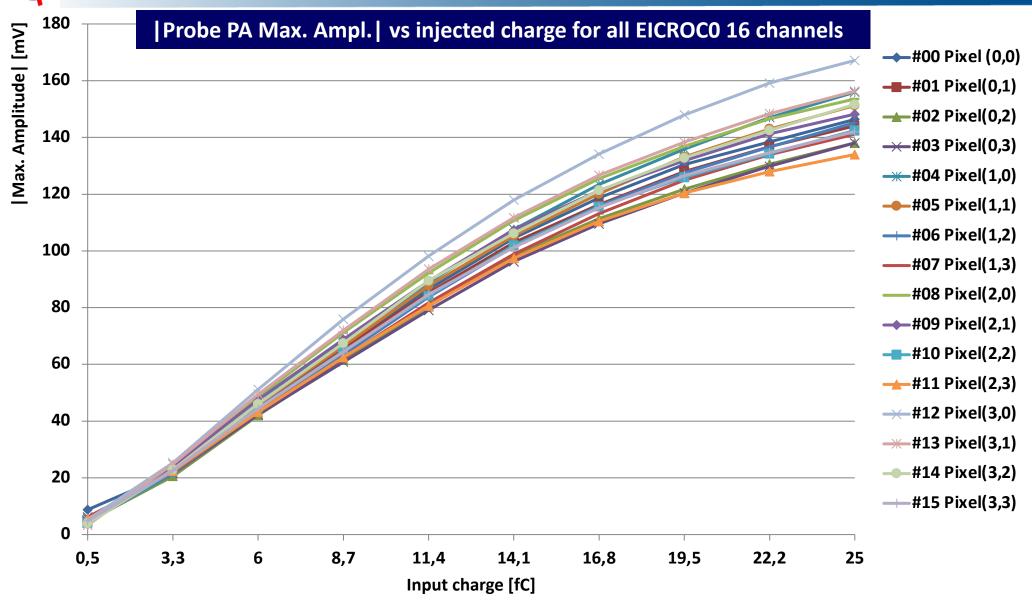

HGCROC TDC (1 mm x 120 μ m):

- spatially adapted to fit in a pixel of 0.5 x 0.5 mm²
- optimization in terms of dynamic range and resolution (10 ps rms) as well as power consumption
- common block for calibration of all TDC channels

★ 5 slow control bytes/pixel:

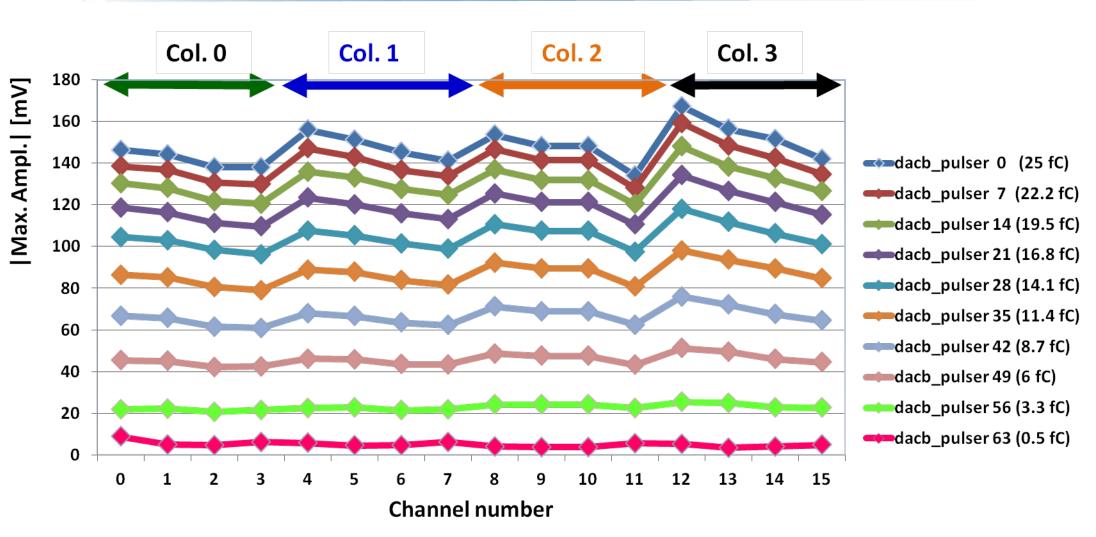
- 6 bits local threshold
- 6 bits ADC pedestal
- 16 TDC calibration bits
- Various on/off and probes

EICROCO layout (1 pad = 1 channel)

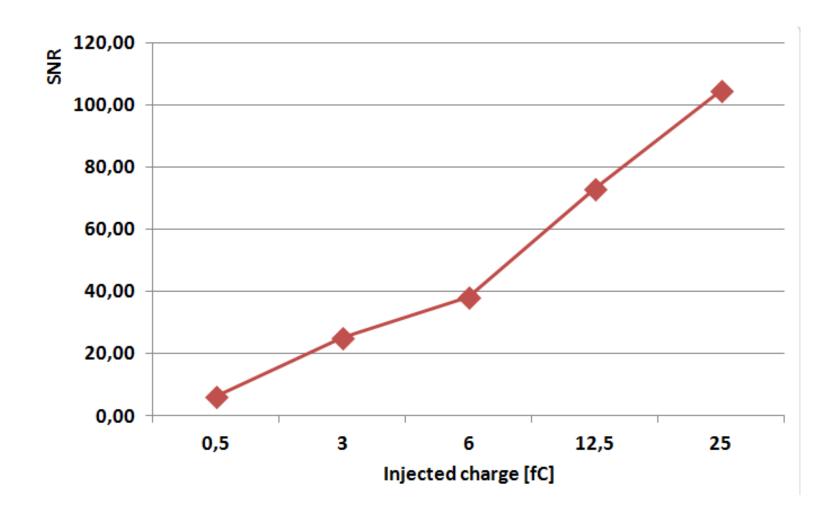

Slow control

PA +discri

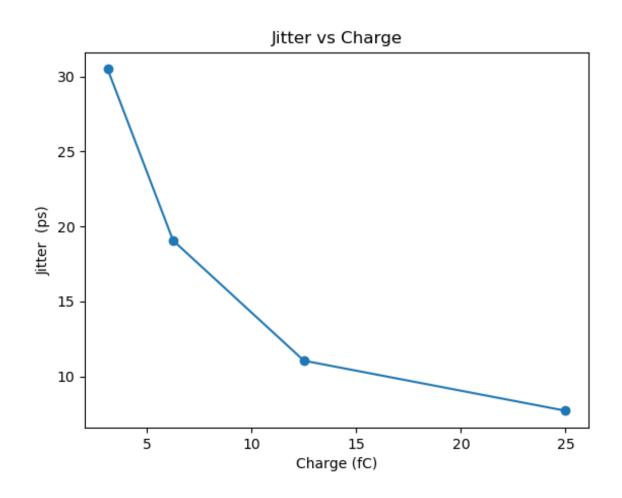
TOA TDC 8b 40M ADC



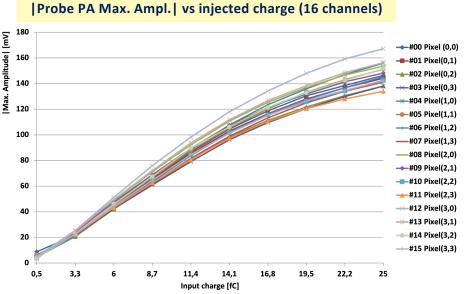
EICROCO TZ Pre Amplifier Probe output signal amplitudes

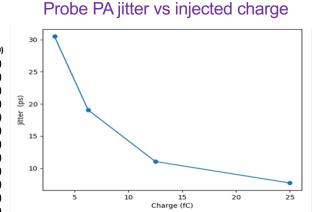


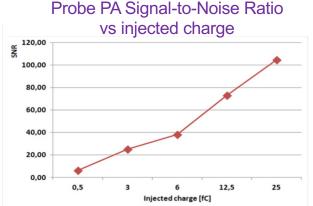
EICROC0 TZ Pre Amplifier Probe output signal amplitudes

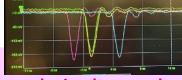


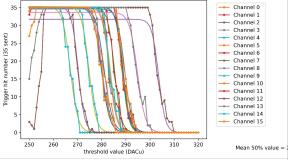
EICROCO Probe PA output Signal to Noise Ratio (SNR)

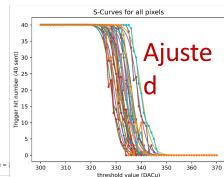



EICROCO Probe PA output jitter



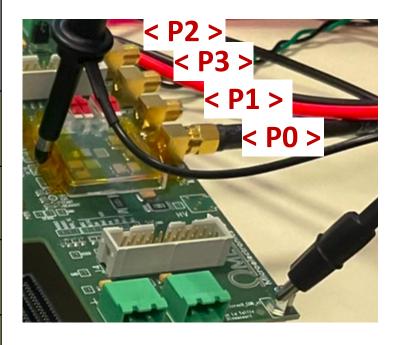

EICROCO 1st prototype (4x4 pads) characterization status (3/3)




Discriminator efficiency (S-Curves) vs threshold

Feature of EICROCO test board:

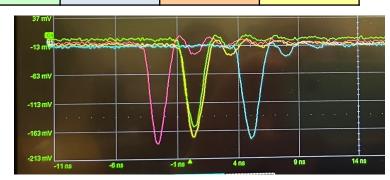
Capability to observe 4 Probe PA channels simultaneously


Status:

- > Individually each component shows performance in agreement with design
- Evaluation of cross-talk between neighboring channels underway
- Investigation of noise / clock couplings (preventing us to fully exploit TDC & ADC data) mandatory to drive next ASIC iteration
- **Board with AC-LGAD sensOr: investigation of oscillation origin when > 2 Probe PA channels**

EICROCO TZ Pre Amplifier Probe output signals

Pixel / Channel Mapping	Column 0	Column 1	Column 2	Column 3
Line 0	Pixel (0,0)	Pixel (1,0)	Pixel (2,0)	Pixel (3,0)
	#00	#04	#08	#12
Line 1	Pixel (0,1)	Pixel (1,1)	Pixel (2,1)	Pixel (3,1)
	#01	#05	#09	#13
Line 2	Pixel (0,2)	Pixel (1,2)	Pixel (2,2)	Pixel (3,2)
	#02	#06	#10	#14
Line 3	Pixel (0,3) #03	Pixel (1,3) #07	Pixel (2,3) #11	Pixel (3 ,3) # 15


PA output signals through SMA connector s (PCB back plane)

Feature of EICROCO test board:

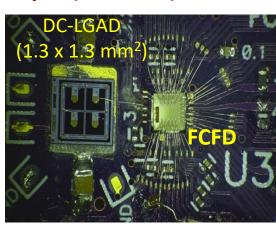
Observation of 4 Probe PA channels <u>simultaneously</u>

1 Probe PA per column

Ex.: #00, #04, #08, #12

FCFD: Forward Constant Fraction **Discriminator**

From Artur Apresyan (FermiLab)


- Develop a robust fast-timing measurement technique for fast detector
- 30 ps time resolution or better
- easy to use & stable: no corrections, no calibration or threshold adjustement
- very low dead time after a hit (< 25 ns)

Methodology:

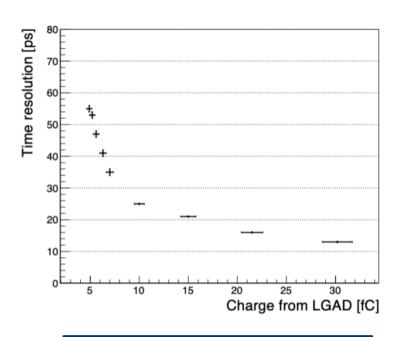
- * « A simulation model of front-end electronics for high precision timing measurements with LGAD », C. Peňa et al., NIM A 940 (2019) 119.
- ⇒ CFD outperforms Leading edge Discriminators for low amplitude signal (preferred for AC-LGAD charge sharing capability)

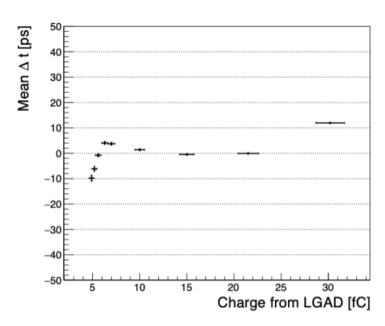
FCFDv0 (TSMC 65 nm CMOS technology)

- 1 single channel, only analog blocks to test CFD approach
- Chip performance characterization with internal charge injection circuit Jitter: ~30 ps (5 fC); < 10 ps (30 fC)
- > + DC-LGAD (CMS-size pixel:1.3 x 1.3 mm²) 1 # wire-bonded IR Laser, Beta source ⇒ confirmation of expected time resolution: ~30 ps
- measurements at test beam facility will follow

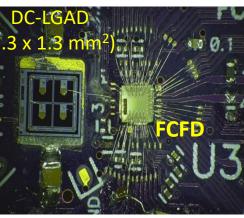
FCF

FCFD: Forward Constant Fraction Discriminator




From Artur Apresyan (FermiLab)

Timing ASIC with CFD FCFDv0


Measurements with laser confirm the excellent intrinsic performance of the ASIC in time resolution and low jitter

Jitter with 1.3x1.3 mm² LGAD sensor

FCFD perspectives

From Artur Apresyan

- **★FCFDv1** (TSMC 65 nm CMOS technology): design finalized, expected delivery from TSMC summer 2023 10 channels, analog blocks + ADC (charge measurement)
- > optimized for EIC AC-LGAD strips (500 μm pitch, 1 cm length)
- development of associated PCB test board
- characterization: late summer '23 ->
- > + AC-LGAD sensor < BNL IR Laser & Beta source: fall '23; Test beam: fall-winter '23
- ***FCFDv2** (TSMC 65 nm CMOS technology): design FY24, characterization FY25
- 10 channels, + digital readout
- development of associated PCB test board
- > + AC-LGAD sensor < BNL IR Laser, Beta source, Test beam

FCFD presentations at eRD112 meetings:

https://indico.bnl.gov/event/17999/ (01/04/23)

https://indico.bnl.gov/event/17084/ (09/14/22)

https://indico.bnl.gov/event/19471/ (05/16/23)

UCSC/SCIPP effort: 3rd party ASIC characterization

<u>Objective</u>: closely collaborating with 3rd party **institutions** and **companies** to **guide** ASIC developments **targetting EIC requirements** developing **PCB test boards** and performing **thorough characterization** (calibration; laser, 90Sr source with LGAD wire-bonded) allowing for ASIC performance comparison

Lead institution	Name	Tech	Output	n channels	Funding
INFN Torino	FAST	110 nm CMOS	TDC	20	INFN
NALU Sci.	HPSoC	65 nm CMOS	Waveform	$5 (\geq 81 \text{ final})$	DoE SBIR
Anadyne Inc.	ASROC	SiGe BiCMOS	Discrim.	16	DoE SBIR

Name	Specific goal	Status	
FAST	Large cap TDC	Testing, new version soon	
HPSoC	Max timing precision, digital back-end	Testing	
ASROC	Max timing precision, low power	Simulations finalized, Layout board	

- > optimized (EIC) **HPSoC 4-ch prototype** (High Pitch digitizer System on Chip): tapeout expected summer '23
- > ASROC: chip ready, waiting for delivery. Associated test board in fabrication
- ➤ INFN FAST: characterization of FAST-2 digital part; waiting for FAST-3 availability

SCIPP presentations at eRD112 meetings: https://indico.bnl.gov/event/17999/ (01/04/23)

https://indico.bnl.gov/event/16767/ (09/06/22)

https://indico.bnl.gov/event/19471/ (05/16/23)