

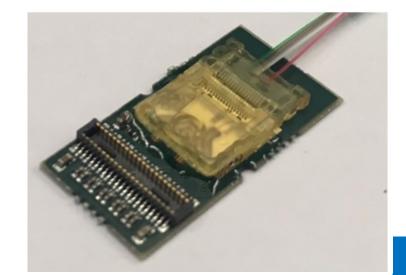
VTRX+ for the dRICH RDO

P. Antonioli, D. Falchieri, G. Torromeo (INFN Bologna) on behalf of the dRICH DSC

Final Design and Safety Review of the VTRX+ and lpGBT Electronics Components for the EIC detector

11 June 2024

VTRX+ and dRICH



- optical transceiver engineered by CERN: rad hard, front-end link standard for HL-LHC (and beyond)
- all R&D and qualification done by CERN. Refer to CERN documentation
- dRICH group pointed out to the EIC project/DAQ group interest back to June 2023 and the need of early procurement (only production run at CERN is next year)

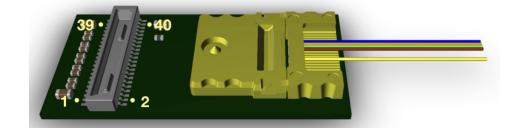
This presentation:

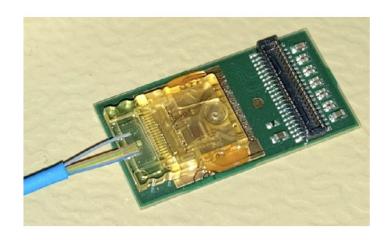
- references about VTRX+
- why VTRX+ for dRICH RDO (re-cap)
- interface: VTRX+ on dRICH RDO
- VTRX+ integration on dRICH
- procurement by INFN for RDO prototypes and pre-production // expertise



Main references for VTRX+

CERN main reference: https://espace.cern.ch/project-Versatile-Link-Plus/SitePages/Home.aspx

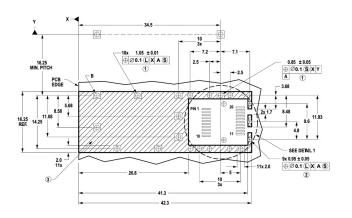

Versatile Link PLUS


and: https://espace.cern.ch/project-versatile-link/public/default.aspx

- Versatile Link Plus Specifications
- VTRX+ Application Note
- VTRX+ Power Consumption

VTRX+ fits dRICH requirements as opt. transceiver

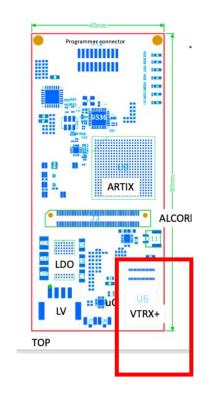
(see previous presentation on RDO)

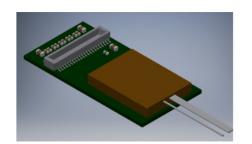

VTRX+ gives to the dRICH:

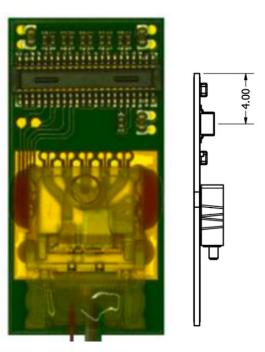
- space (20 x 10 x 2.5 mm³)
- radiation tolerance (up to 1 MGy!)
- enough bandwidth (10 Gbps)
- low power consumption (1 TX + 1 RX: 156 mW)

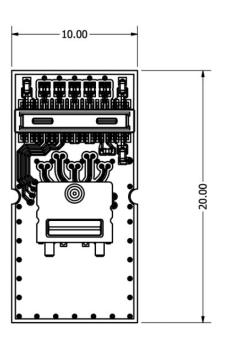
VTRX+: 20 x 10 x 2.5 mm³

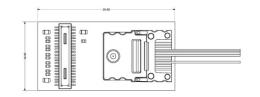
Commercial choice (just an example up to 14.025 Gb/s)





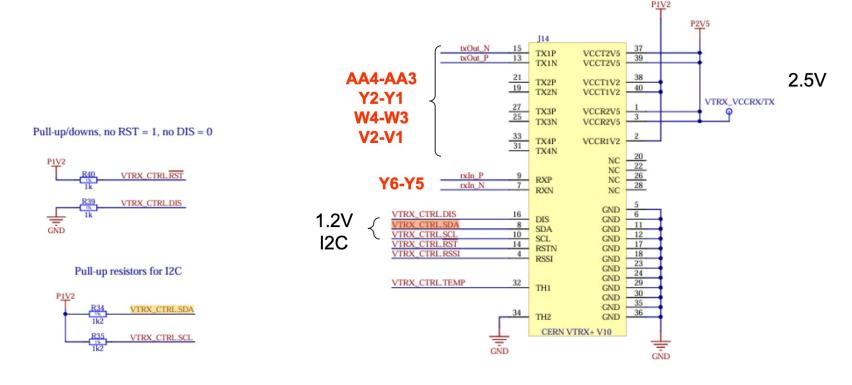

Example of commercial choice: 4.23 x 1.62 cm!


Interface (1)


3D model from CERN used for CAD footprint etc. from CERN in schematics/layout

Interface (2): VTRX+ connections on RDO

Pin #	Name	Description	Pin #	Name	Description
1	VCCR2V5	2.5V Power supply for TIA	2	n/c	
3	VCCR2V5	2.5V Power supply for TIA	4	RSSI	RSSI current output from TIA, to be pulled up via a resistor to VCCR2V5
5	GND	Ground	6	GND	Ground
7	RXN	Rx output	8	SDA	I2C data (to be pulled-up to VCCT1V2)
9	RXP	Rx output	10	SCL	I2C clock (to be terminated to VCCT1V2)
11	GND	Ground	12	GND	Ground
13	TX1N	Tx Ch.1 input	14	RSTN	Laser Driver Reset
15	TX1P	Tx Ch.1 input	16	DIS	Laser Driver Disable
17	GND	Ground	18	GND	Ground
19	TX2N	Tx Ch.2 input	20	n/c	
21	TX2P	Tx Ch.2 input	22	n/c	
23	GND	Ground	24	GND	Ground
25	TX3N	Tx Ch.3 input	26	n/c	
27	TX3P	Tx Ch.3 input	28	n/c	
29	GND	Ground	30	GND	Ground
31	TX4N	Tx Ch.4 input	32	TH1	10k Thermistor Terminal 1
33	TX4P	Tx Ch.4 input	34	TH2	10k Thermistor Terminal 2
35	GND	Ground	36	GND	Ground
37	VCCT2V5	2.5V Power supply for Laser Driver	38	VCCT1V2	1.2V Power supply for Laser Driver
39	VCCT2V5	2.5V Power supply for Laser Driver	40	VCCT1V2	1.2V Power supply for Laser Driver


HIROSE DF40HC(4.0)-40DS-0.4V connector to plug the VTRx+ on it

	VCCR2V5_1		
	NC_1		
	VCCR2V5 2		
	RSSI		
	GND 2		
	GND 3		
	RXN		
	SDA		
	RXP		
0	SCL		
2	GND 4		
2	GND 5		
3	TX1N		
4	RSTN		
5	TX1P		
6	DIS		
7	GND 6		
8	GND_7		
9	TX2N		
0	NC 2		
2	TX2P		
	GND 8		
3	GND 9		
4	GND 10		
5	TX3N		
6	NC 3		
7	TX3P		
8	NC 4		
9	GND 11		
0	GND_11		
1	TX4N		
2			
3	TH1 TX4P		
4			
5	TH2		
6	GND_13		
7	GND_14		
8	VCCT2V5_1		
9	VCCT1V2_1		
0	VCCT2V5_2		
_	VCCT1V2_2		

Interface (3): VTRX+ connections to FPGA

from https://edms.cern.ch/ui/file/2391528/2/EDA-04075-V2-0_sch.pdf

- We use just one TX line, but possiblity to connect all four
- I2C connected to Polarfire (1.2V bank)

Procurement for prototypes and production

- INFN-BO has already in hands 20 VTRX+ (for RDO prototypes in 2024/2025) (and a VLDB+ card from CERN)
- VTRX+ procurement for dRICH from the project via CD-3B→ expected delivery end of 2026 fits dRICH RDO timeline
- for production, consistently with RDO procurement, we need 1500 VTRX+

Additional expertise/contact

good contacts with INFN-PD (CMS): they have realized a card (CMS OBTD-CARD) with one direct interface of the VTRX+ to the FPGA <u>without IpGBT</u> as per dRICH RDO application. <u>Reference to 2023 TWEPP presentation</u>

Integration with dRICH



- if changes will happen to the RDO design, the interface with VTRX+ will not change
- any RDO changes can easily adapt to VTRX+ specifications (which are fixed) and described in slides 6, 7, 8 of this talk
- VTRX+ specifications are final
- VTRX+ for dRICH will be tested first at INFN-BO during RDO and PDU assembly

the VTRX+ pigtail length

- for prototypes // lab tests we ordered 40 cm length pigtail
- not yet modelled on the CAD cabling on the detector box:
- it is likely a short (few cm) pigtail, connecting to a connection bar

This study will be done by end of 2024 in time for CD-3B procurement

Summary

- the case for VTRX+ as selected optical transceiver for dRICH RDO has been set out
- the specifications (TX link up to 10 Gb/s, rad hard, small size, low power) match dRICH RDO requirements for its transc/opt. link
- the number of VTRX+ to be ordered is 1500
- the interface between the VTRX+ and the dRICH RDO (PCB, connections to FPGAs) are known, documented and being implemented in RDO prototypes
- VTRX+ specifications are final
- design changes to the current RDO prototype (if any) will be done maintaining VTRX+ interface