Backward Hadronic Calorimeter for ePIC Overview and status

Leszek Kosarzewski

The Ohio State University

Joint Kent State and Ohio State University meeting 24.5.2024

Outline

- Introduction and organization
- Backward HCal design
- Geometry implementation in dd4hep
- Backward-going jets
 - Low energy neutrons in jets
 - Low energy neutron detection
 - Position resolution
- Vector meson studies
- 6 Jet with neutrals performance
- Testing and work by university groups
- Summary

Introduction and organization

Webpage set up - see for up to date info

https://wiki.bnl.gov/EPIC/index.php?title=Backward_Hcal

Mailing list

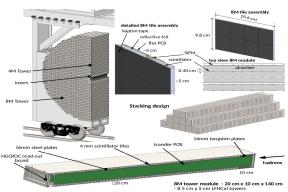
epic-backward-hcal-l@lists.bnl.gov

Mattermost channel

https://chat.epic-eic.org/main/channels/det-hcal-backward

Institutions

OSU, CTU in Prague, UNH, BNL (help), UIUC (joined)

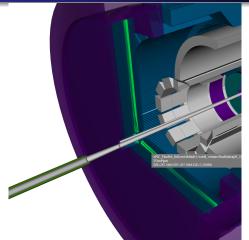


Introduction - backward HCal (nHCal)

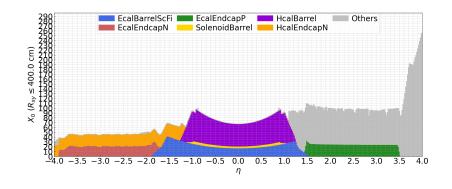
Requirements: https://eic.jlab.org/Requirements/

A future backward HCal shall provide functionality of a tail catcher for the high resolution e/m calorimeter in electron identification, as well as for jet kinematics measurement at small Bjorken \times

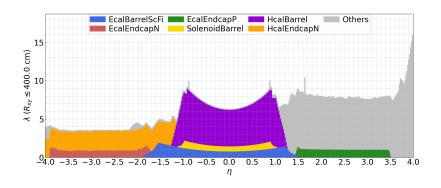
- Design considerations:
 - High efficiency for low energy neutron detection
 - Good spatial resolution to distinguish neutral/charged hadrons
- Follow similar solutions as Forward HCal instead of STAR EEMC megatiles
 - Due to required quick dissasembly of STAR the EEMC megatiles are no longer an option
 - Can make adjustments to Forward HCal (LFHCAL) design, but no need to reinvent the wheel


Design

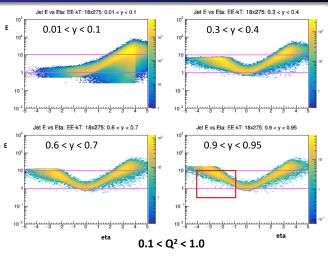
- Sampling calorimeter with 10 alternating layers, $2.4\lambda^0$ (red), similar to Belle-II KLM:
 - non-magnetic steel 4 cm
 - plastic scintillator 4 mm to be adjusted
- Light collection by SiPM:
 - Candidate (to verify): S14160-1315PS https://www.hamamatsu.com/eu/en/product/optical-sensors/mppc/mppc_mppc-array/S14160-1315PS.html
- Electronics to follow solutions of other calorimetry systems HGCROCv3
- FEEs placed in front of nHCal


- nHCal decoupled from the magnetic steel ⇒ more flexibility
- Support structures design required for TDR

Geometry implementation in dd4hep

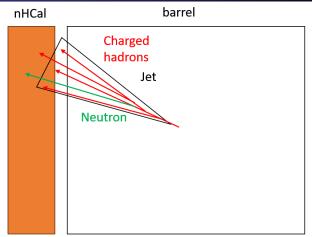

- A simplified version with STAR EEMC tiles already present in the main ePIC branch and included in the simulation campaigns up to November, stainless steel as an absorber
 - Good enough for basic checks
- \bullet Forward HCal-type geometry with $10~\mathrm{cm} \times 10~\mathrm{cm}$ tiles implemented for December campaign
- Flux return steel surrounding nHCal (purple) in private branch ready for commit into main

Radiation length - brycecanyon geometry

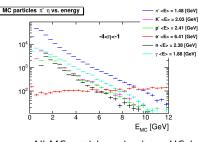

- $\sim 24X_0$ for backward HCal
- Scintillator tiles do not cover the same volume as steel absorber yet

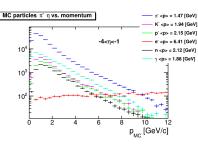
Interaction length - brycecanyon geometry

- $\bullet \sim 2.4 \lambda_0$ for backward HCal
- Scintillator tiles do not cover the same volume as steel absorber yet


Low energy neutrons in jets

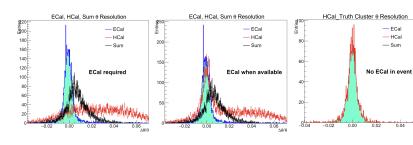
Brian Page, BNL


- Backward-going jets coming from low-x partons and high y events
 - Interesting physics!
- See more in presentation by Brian: https://indico.bnl.gov/event/20679/

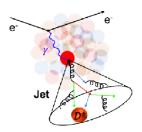

Neutral hadron reconstruction in a jet

- Jets reconstructed with charged hadron showers
- Missing a neutron will degrade the energy resolution of jets
- Need good low energy neutron:
 - detection efficiency
 - position resolution to distinguish from charged hadrons
- Need track-cluster matching to be able to see impact on neutrons vs. charged hadrons within jets - Required for TDR

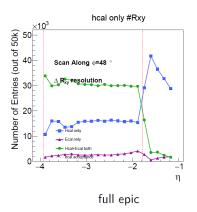
Particle distributions going into nHCal

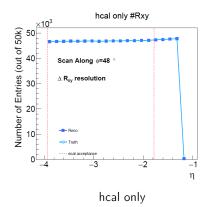


- All MC particles going into nHCal direction
- ullet Mean energy (total) of neutrons < E >= 2.38 ${
 m GeV}$, lowest E = 1 ${
 m GeV}$
- ullet Mean momentum of neutrons $= 2.12~{
 m GeV/c}$, lowest $p=0~{
 m GeV}$


Scattering may be a problem for jet energy reconstruction

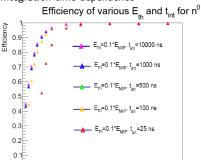
Alexandr Prozorov, CTU

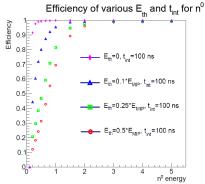

- 38% of neutrons scatter in backward EMCal
- Scattered neutron may fall out of a jet reconstruction cone
- We need to study this in coordination with Jet-HF PWG
- Work in progress on software compensation and neutron reconstruction with machine learning
- Following a study by LFHCAL group: https://arxiv.org/abs/2310.04442


$$e^-$$
+ Au $\rightarrow e^-$ + $jet(D^\pm)$ + X

Interactions with HCal and EMCal

Alexandr Prozorov, CTU

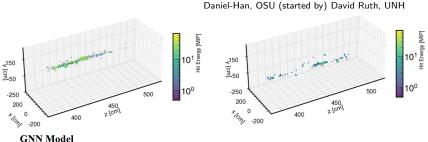


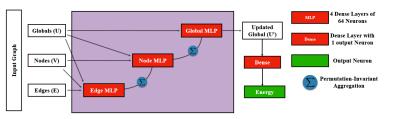

- 38% of $5\,\mathrm{GeV}$ neutrons scatter in backward EMCal (as expected with $\sim 1\lambda_0$)
- ullet 93% cluster reconstruction efficiency for 5 ${
 m GeV}$ neutrons
- Tianhao with Maria Stefaniak to verify it with the world data

Neutron detection efficiency

Integration time dependence

Threshold dependence


Sam Corey, OSU


- Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th} , $t_0=0$
- Checked with simulation only no digitization

n0 energy

- \bullet E_{MIP} is $0.75~{
 m MeV}$ per layer
- E_{th} has the biggest impact
- ullet 100 ns is good enough, but lower energy neutrons may need longer times
- ullet 60% efficiency for $E=300~{
 m MeV}$ neutrons $E_{th}=0.1 imes E_{MIP}=75~{
 m keV}$ and $100~{
 m ns}$

Neutron shower reconstruction with machine learning

- Work in progress on software compensation and neutron reconstruction with machine learning
- Following a study by LFHCAL group: https://arxiv.org/abs/2310.04442
- Use of Graph Neural Networks to reconstruct showers

Neutron shower reconstruction with machine learning

LFHCAL results taken from https://arxiv.org/abs/2310.04442

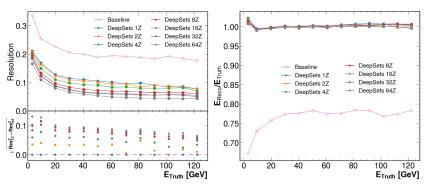
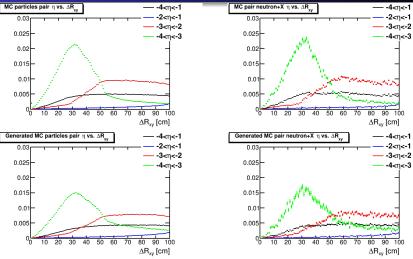
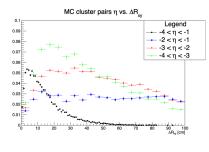
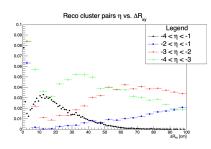
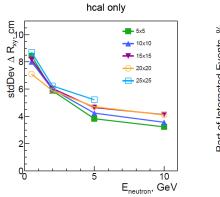



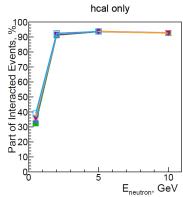
FIG. 4. Energy resolution (left) and energy scale (right) of calorimeter with different number of Z-sections along the longitudinal direction. The bottom panel of resolution plot shows the square root of difference in squares of resolution of 1 Z-section and the given Z-sections.


- GNNs provide much better performance than standard reconstruction
- Need to investigate it with staggered design (not a priority right now)

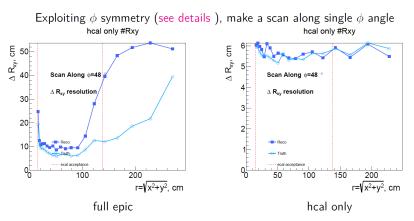

Distance between particle projections in nHCal

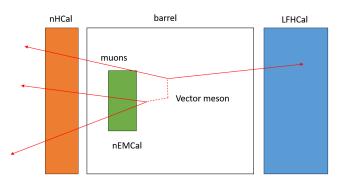
- Straight line projections (no proper projections available at that time)
- ullet Resolution of 20 cm at high η good enough to separate most particles
- ullet Can be even larger at smaller η
- Generated particles = primaries only
- \circ Distributions normalized over the entire range, but zoomed in $0 < \Delta R_{\rm XV} < 100~{
 m cm}$


Distance between clusters - work in progress example

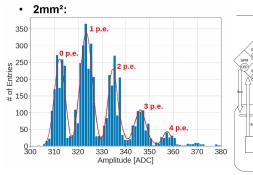


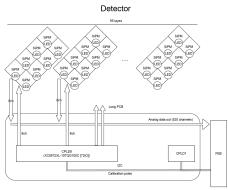
Nick Jindal, OSU


- Similar results for clusters, qualitatively consistent with MC particle straight line projections
- \bullet Resolution of 20 $\rm cm$ seems good enough, peak at 30 $\rm cm$ for reco clusters (20 $\rm cm$ for MC)
- Hit merging across layers was disabled here
 - Clusters from different layers overlap in XY, cause excess around 0


- Shoot single neutrons and compare ideal projections to RECO clusters
- Vary energy and tile size to obtain scaling
- \bullet Even large tiles up to 25 $\rm cm$ seem to be OK
- Need track projections and cluster matching in realistic DIS events next steps

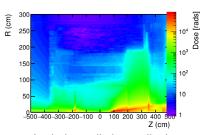
Alexandr Prozorov, CTU

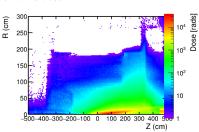

• Barrel materials in front deteriorate the position resolution due to scattering


Vector meson studies

- Important for high y or low- p_T vector mesons depends on type
- Increases acceptance
- \bullet Need projected MIP tracks and MIP signals in backward HCal and EMCal
 - μ/π distinction important, position resolution...
- Performance estimate required for TDR

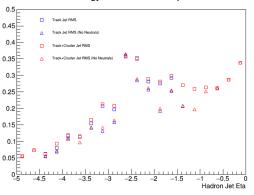
Calibration system with LEDs




- 1 LED per channel operated via I^2C
- Use single photon spectra to calibrate the response
- Can simulate any pattern: realistic showers etc.
- Check for cross-talk and light leakage
- Design by Norbert Novitzky (LFHCAL group, ORNL) need channel topology

10 year radiation dose for backward HCal

EM dose


Hadronic dose

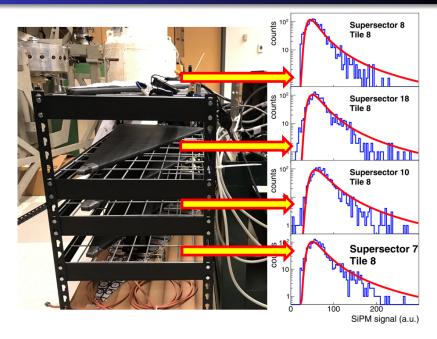
- Looked at radiation studies here: https://wiki.bnl.gov/EPIC/index.php?title=Radiation_Doses
- Took root files and scaled to 10 years: https://bnlbox.sdcc.bnl.gov/index.php/s/2sxywCQQgHP4ESn
- Integrated doses between $-440 < z < -395 \, \mathrm{cm}$
- EM dose 26.3k rad, hadronic dose 0.897k rad
- May need to re-run simulations with updated geometry

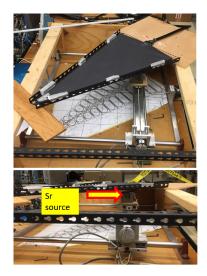
Brian Page, BNL

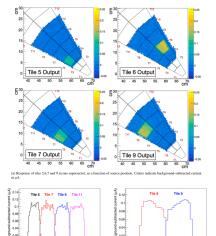
Jet Energy Resolution Comparison

- ☐ Triangles below squares by several percent in each bin
 - Sample with no neutrons will have better resolution
- Blue is often slightly better than red
 - Adding neutral cluster information to the jet finding degrades resolution very slightly – energy fluctuations from calorimeter

- Isolating neutral (20-25% of all jets) and charged jets already improves the resolution by 20-30%
- Unavoidable deterioration of resolution when adding clusters
 - Tracking offers better resolution in this kinematic range
 - However hadron measurements still needed for neutrals!
- Need track projections and cluster matching in DIS events for a realistic study


Testing and work by university groups




- Backward HCAL construction project well-matched for university group
 - subsidized shops with CNC, etc
 - characterization/testing with simple CAMAC systems etc
 - student-scale physical work

Tile characterization with cosmics

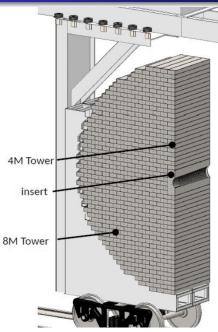
Uniformity, isolation characterization with source & translation table

Conclusions

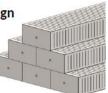
- Presented basic concept for backward HCal for ePIC
- Simplified geometry already in simulation campaign:
 - for STAR EEMC geometry+extensions until November
 - for LFHCAL-style starting from November
- Work in progress on neutron detection with machine learning
- Position resolution study with single particles done
 - $10~\mathrm{cm} \times 10~\mathrm{cm}$ is a good choice (can use up to $25~\mathrm{cm} \times 25~\mathrm{cm}$)
 - Need realistic study with track projections and cluster matching in DIS events
- Jet performance study:
 - Shown first results, well on track
 - Continue in realistic DIS events
- Growing Detector Subsystem Collaboration: OSU, CTU, UNH, BNL, UUIC

BACKUP

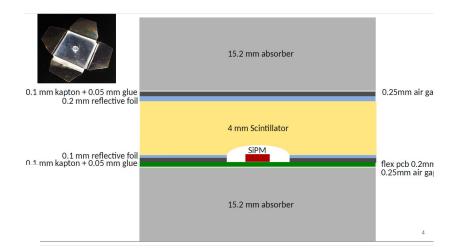
Dataset - simulation campaign

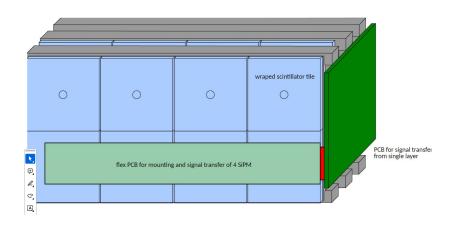

- Motivation:
 - Check distance between pairs of MC particles projected to nHCal surface
 - Check distance between neutrons and other particles
- Analysis of data from the simulation campaign:
 - $18 \times 275 \text{ GeV } e + p \text{ collisions}, 0 < Q^2 < 1 \text{ GeV}^2$
 - 1.3M SIDIS events simulated with PYTHIA
 - Brycecanyon geometry

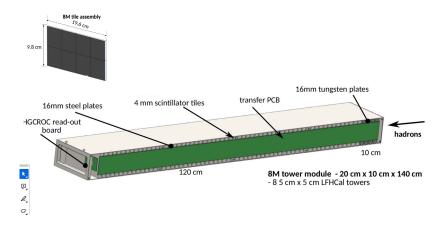
Listing: Files selection

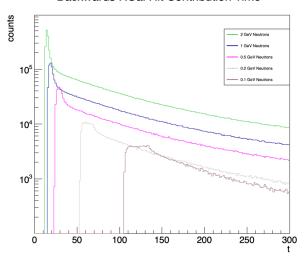

 $S3/eictest/EPIC/FULL/23.06.1/epic_brycecanyon/SIDIS/pythia6/ep_18x275/hepmc_ip6/noradcor/ep_noradcor.18x275_q2_0_1*edm4hep.root$

- Particle cuts:
 - primaries with start vertex z > -395 cm (in front of HCal)
 - \bullet secondaries with start vertex $z > -300 \ \mathrm{cm}$ (in front of HCal, after EMCal)
 - cut out e, γ, π^0, η
- Projected MC particles using straight line along their momentum direction to nHCal surface (simple check - neglects B field)

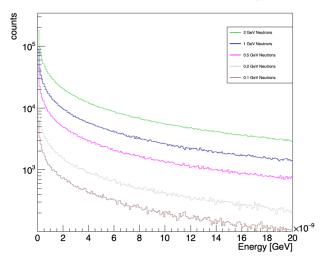

LFHCal design

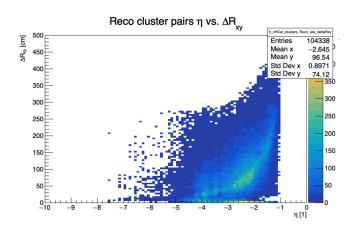



LFHCal layers

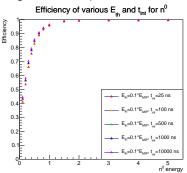

LFHCal PCBs

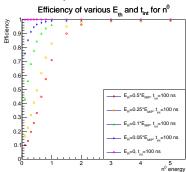
LFHCal PCBs



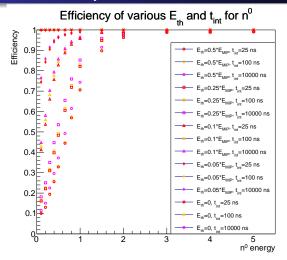

Backwards HCal Hit Contribution Time

• Neutrons at lower energy are delayed

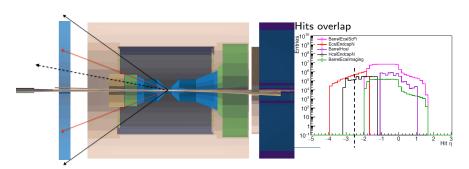

Backwards HCal Hit Contribution Energy



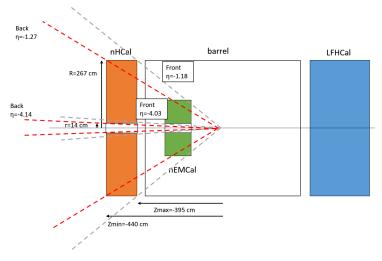
Neutron detection efficiency


Integration time dependence

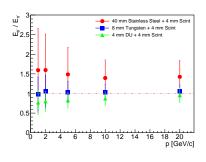
Threshold dependence


- ullet Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th}
- Checked with simulation only no digitization
- E_{MIP} is 0.75 MeV per layer
- Eth has the biggest impact
- ullet 100 ${
 m ns}$ is good enough, but lower energy neutrons may need longer times
- to starting from the first hit

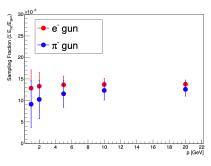
- ullet Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th}
- \bullet E_{MIP} is $0.75~{
 m MeV}$ per layer
- $E_{th} = 0.1 \times E_{MIP} = 75 \text{ keV}$ and 100 ns provides good performance
- Need lower threshold and longer signal integration for better performance at low energy


Overlap of calorimeters

Acceptance

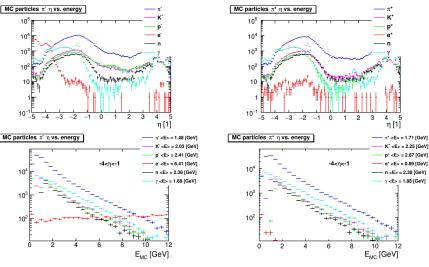

- \bullet Acceptance $-3.5 < \eta < -1.27$ TO BE CHECKED
- Overlaps with backward and barrel EMcals
- Scattering may be important in these overlap regions

Acceptance check

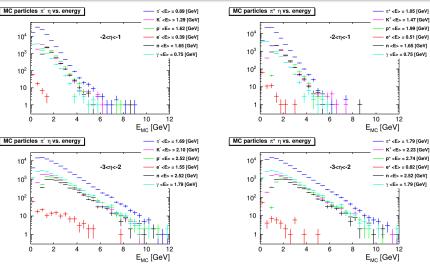


- Front geometry limit: $-4.03 < \eta < -1.18$
- Back geometry limit: $-4.14 < \eta < -1.27$
- Clusters: $-3.95 < \eta < -1.25$

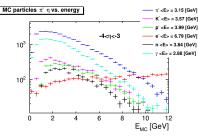
Electron/hadron response

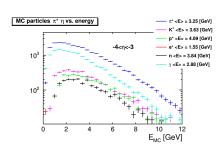


40 layers of 40 mm stainless steel+4 mm scintillator (for cross-check)

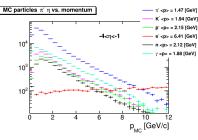

- Current design provides compensation
- ullet Sampling fraction pprox 1%
 - ullet This means a $1~{
 m GeV}$ hadron leaves similar signal to a $E_{MIP}=7.5~{
 m MeV}$ across 10 layers
- Tungsten provides good performance
 - May add a few layers in front like for LFHCAL

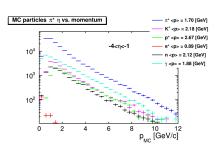
Particle distributions - eta and energy


- All MC particles hitting nHCal
- Mean energy of neutrons $\langle E \rangle = 2.38 \, \mathrm{GeV}$
- Large number of high E e - from beam?

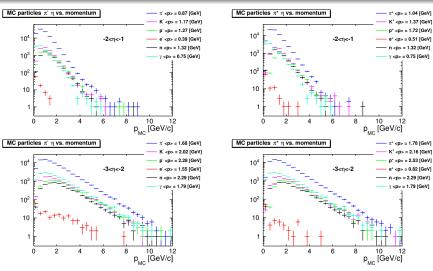

Particle distributions - Energy vs. eta

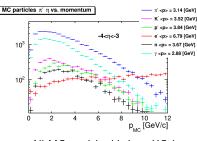
- All MC particles hitting nHCal
- Mean energy of neutrons < E $>_{-2<\eta<-1}=$ 1.65 GeV and < E $>_{-3<\eta<-2}=$ 2.52 GeV

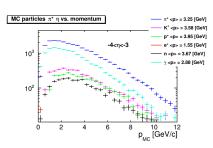

Particle distributions - Energy vs. eta



- All MC particles hitting nHCal
- Mean energy of neutrons $< E>_{-4<\eta<-3}=3.84~{\rm GeV}$


Particle distributions - Momentum


- All MC particles hitting nHCal
- Mean momentum of neutrons $= 2.12 \,\mathrm{GeV/c}$


Particle distributions - Momentum vs. eta

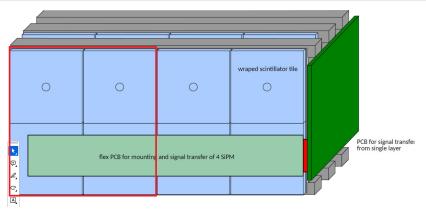
- All MC particles hitting nHCal
- Mean momentum of neutrons < p $>_{-2<\eta<-1}=1.32~\rm{GeV/c}$ and < p $>_{-3<\eta<-2}=2.29~\rm{GeV/c}$

Particle distributions - Momentum vs. eta

- All MC particles hitting nHCal
- Mean momentum of neutrons < $p>_{-4<\eta<-3}=3.67~{\rm GeV/c}$

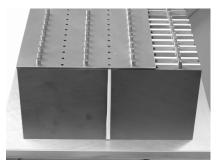
Summary table

Energy


6)					
η	$< E > { m GeV}$ inclusive n	$<$ E $>$ ${ m GeV}$ primary n			
$-4 < \eta < -1$	2.38 GeV	$2.38~{ m GeV}$			
$-2 < \eta < -1$	$1.65~{ m GeV}$	$1.65~{ m GeV}$			
$-3 < \eta < -2$	$2.52\mathrm{GeV}$	$2.52\mathrm{GeV}$			
$-4 < \eta < -3$	$3.84~{ m GeV}$	$3.84~{ m GeV}$			

Momentum

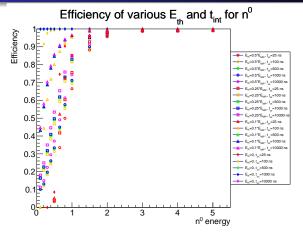
η	$<$ p $> { m GeV/c}$ inclusive n	$<$ $p > { m GeV/c}$ primary n	
$-4 < \eta < -1$	$2.12\mathrm{GeV/c}$	$2.12\mathrm{GeV/c}$	
$-2 < \eta < -1$	$1.32\mathrm{GeV/c}$	$1.32\mathrm{GeV/c}$	
$-3 < \eta < -2$	$2.29\mathrm{GeV/c}$	$2.29\mathrm{GeV/c}$	
$-4 < \eta < -3$	$3.67~{ m GeV/c}$	$3.68~{ m GeV/c}$	


• Secondary neutrons have < E $>_{-4<\eta<-1}=1.0~{\rm GeV}$ and < p $>_{-4<\eta<-1}=0.27~{\rm GeV}$ - constant vs. η

Design option 1 - LFHCAL style

- SiPM on tile with $5 \text{ cm} \times 5 \text{ cm}$ tiles
- \bullet Use 2x2 5 $\mathrm{cm} \times 5 \; \mathrm{cm}$ tile modules similar to 4M module of LFHCAL
- \bullet Connect outputs of 2x2 tile module to integrate the signal and create an effective $10~\rm cm \times 10~\rm cm$ segment
- Can readout each layer independently or integrate 5 forward and 5 backward layers to save costs
- No need to optically isolate tiles, only the whole module

Design option 2 - STAR FCS style



- ullet 10 cm imes 10 cm tile modules similar to STAR FCS
- Light collection with SiPMs through WLS plate (middle)
 - Collects light from all 10 layers
 - Maybe can isolate WLS plate into 2 segments to collect light from 5 forward and 5 backward layers independently

Comparison of 2 options

Design option	light collection	features	readout
1 SiPM on tile LFHCAL style	SiPM on tile	light collection closer to source	various configurations possible eg: each layer independently 2x2 tile signal adding
2 WLS plate to SiPM STAR FCS style	SiPM via WLS plate	collects light from all layers better light propagation	combined from 2x2 tile segment integrated cross layers 5+5 layer configuration possible

- Comparison in progress
- $\approx 21k$ channels with independent readout from each of 10 layers (cost 1.76*M*\$)
 - Savings of factor of 5 on electronics ($\approx 4k$ channels) if integrated 5 front and 5 back layers (cost 1.53M\$)
 - \bullet Savings of factor of 10 on electronics ($\approx 2.1k$ channels) with WLS plates (cost 1.5M\$)

- ullet Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th}
- E_{MIP} is 0.75 MeV per layer
- $E_{th} = 0.1 \times E_{MIP} = 75 \text{ keV}$ and 100 ns provides good performance
- Need lower threshold and longer signal integration for better performance at low energy