

Where will we go in ENDF/B-IX – Thermal Neuron Scattering

Michael L. Zerkle (NNL) Ayman I. Hawari (NCSU)

Mini-CSEWG Meeting, August 13-15, 2024 Los Alamos National Laboratory

Guided Discussion Topics

- New/revised TSL evaluations
- Areas ripe for targeted strategic investment to prepare for ENDF/B-IX
 - TSL Validation
 - Relaxing of physics approximations
 - Alternate enrichment treatment for fuel compounds
 - TSL Covariance Data
 - Machine Learned TSL Kernels

New/Revised TSL Evaluations from NCSU (NCSP Appendix B)

- Polyethylene ((C₂H₄)_n)
 - Additional temperatures to support TEX-low temp
 - Transportation analyses
- Uranium silicide (U₃Si₂)
- Paraffin (Wax)
- Light Paraffinic Oil (Mineral Oil)
- HEU/HALEU fuel materials
 - U₃O₈
 - U-Mo
- Fissile Solutions
 - Uranyl Fluoride (UO₂F₂)
 - Uranyl Nitrate (UO₂(NO₃)₂)
 - Plutonium Nitrate (Pu(NO₃)₄)

Light Paraffinic Oil	NCCU	NCCU	NCGU				
(Mineral Oil)	NCSU	NCSU	NCSU				
Basis	TSL evaluation. Mineral oil and other light paraffinic oils are moderators often found in fissile handling areas (FHAs). A thermal scattering law for light paraffinic oils would reduce excessing margins in nuclear criticality safety evaluations for fissile handling areas containing this class of moderator. TSL requested by NNL.						
Triuranium Octoxide		NCSU	NCSU	NCSU			
$(U_{3}O_{8})$		ncsu	NCSU	NCSU			
Basis	TSL evaluation. A common fissile compound for which there are numerous critical experiments in the ICSBEP Handbook. A thermal scattering law for U_3O_8 will improve Doppler broadening using advanced methods currently under development as LLNL ND12.						
U-Mo			NCSU	NCSU	NCSU		
Basis	research and test reactors. A thermal scattering law for the HALEU U-Mo fuel system will improve simulations through higher fidelity and reduced uncertainty. Supports design studies related to the conversion of high-performance research and test reactors from HEU to HALEU, fuel cycle facilities producing this fuel system, and transportation analyses.						
Uranyl Fluoride (UO_2F_2)			NCSU	NCSU	NCSU		
Basis	ISL evaluation. A common fissile compound for which there are numerous critical experiments in the ICSBEP Handbook. A thermal scattering law for UO_2F_2 solutions will improve modeling and simulation of fissile solution systems.						
Uranyl Nitrate (UO ₂ (NO ₃) ₂)				NCSU	NCSU	NCSU	
Basis	TSL evaluation. A common fissile compound for which there are numerous critical experiments in the ICSBEP Handbook. A thermal scattering law for $UO_2(NO_3)_2$ will improve modeling and simulation of fissile solution systems.						
Plutonium Nitrate					NCSU	NCSU	NCSU
$(Pu(NO_3)_4)$					11050	11050	neso
Basis	TSL evaluation. A common fissile compound for which there are numerous critical						
	experiments in the ICSBEP Handbook. A thermal scattering law Pu(NO ₃) ₄ will improve						
	modeling and simulation of fissile solution systems.						

TSL Validation

- Subthermal neutron transmission measurements
- Add capability to heat/cool samples
- PNDA measurements
 - Add capability to heat/cool samples
 - Develop pre-moderated capability for non-hydrogenous moderators
- More critical experiments
 - TEX series of experiments useful framework
- New benchmarks from startups

Relaxing Physics Approximations

- Accounting for effect of thermal expansion on coherent elastic scattering
 - Could be useful for some advanced high temperature reactor applications
 - Currently assume Bragg edge energies are temperature independent
 - One of last remaining TSL physics approximations in ENDF-6 format
 - Supported in GNDS
 - Bragg edge energies become temperature dependent in MF7/MT2
 - Will need to develop implementation guidance for evaluators, nuclear data processing codes, and application codes
 - Temperature dependent interpolation
 - Logically rectangular data structure for Sd factors
- Ripe for targeted strategic programmatic investment

Alt. Enrichment Representation for Fuel Compounds

- Current treatment NCSU uses for enrichment in fuel compounds is rigorous
 - Enrichment effects on scattering are real
 - Fission dominates
- May be useful to explore approximations that could be easier to implement in reactor depletion calculations
 - Different partitioning of isotopic contributions
 - Assess impact of approximation
- Options for alternate organization of TSL information for enriched fuel compounds
 - C(UC)
 - ²³⁴U(UC)
 - ²³⁵U(UC)
 - ²³⁶U(UC)
 - ²³⁸U(UC)

FIG. 15. (Color online) The inelastic scattering cross section of UC shown at selected temperatures and enrichments. The natural total scattering cross sections of UC at 293.6 K and measurement [40] are also shown.

TSL Covariance Data

- While some work has been done on covariance data evaluation frameworks
 - Holmes for AILD
 - Chapman for MD
- Additional R&D needs to be done to complete development needed to deliver production quality covariance data
 - Complete development of evaluation methodology
 - Evaluator/User guidance
 - Format
 - Implementation in TSL evaluation codes
- Focused community effort will be needed to prepare for ENDF/B-IX

Machine Learned TSL Kernels

- Recent R&D has shown potential
 - Smaller memory footprint
 - Higher temperature fidelity
 - Well suited for reactor engineering and Multiphysics simulations
- Potential disruptive technology
- Different format/data structure
 - Neural network
 - GNDS can likely be adapted to accommodate
- Not clear if should be included in ENDF or code system implementation
 - On-the-fly analysis may require code system implementation

Other Areas for Strategic Investment

•?