

Delivering science and technology to protect our nation and promote world stability

Current and future Pu validation experiments

J. Hutchinson, T. Cutler, N. Kleedtke, G. McKenzie, I. Michaud, D. Neudecker, K. Stolte, N. Thompson, R. Little

8/13/24: Mini CSEWG

Overview

- Historic Pu validation experiments
- Recent NCERC benchmarks
 - EUCLID
- Future experiments
 - Lilith
 - PARADIGM
 - Others

3

Historic Pu validation experiments

- Table at right shows benchmarks sorted in order of descending Pu239 fission sensitivity.
- Integrated over all energy, ENDF/B-VIII.0 nuclear data.
- List mostly filled with historic LANL (blue) and Russian (red) experiments.
- LANL has a history of Pu239 validation experiments.
 - We are continuing to add new experiments.

Experiment	Fission	Elastic	Inelastic	n,gamma	total nu
pu-met-fast-022-001	0.743	0.064	0.041	-0.008	0.987
pu-met-fast-025-001	0.731	0.051	0.033	-0.009	0.988
pu-met-fast-035-001	0.729	0.051	0.033	-0.009	0.988
pu-met-fast-040-001	0.729	0.048	0.033	-0.010	0.988
pu-met-fast-039-001	0.727	0.045	0.032	-0.010	0.988
pu-met-fast-001-001	0.727	0.063	0.040	-0.008	0.966
pu-met-fast-001-004	0.726	0.063	0.040	-0.008	0.966
pu-met-fast-001-002	0.726	0.062	0.040	-0.008	0.966
pu-met-fast-001-003	0.726	0.063	0.039	-0.008	0.966
pu-met-fast-023-001	0.725	0.046	0.032	-0.010	0.988
pu-met-fast-045-005	0.718	0.035	0.026	-0.014	1.000
pu-met-fast-026-001	0.718	0.039	0.022	-0.011	0.988
pu-met-fast-045-004	0.718	0.034	0.026	-0.014	1.000
pu-met-fast-045-006	0.718	0.038	0.024	-0.015	1.000
pu-met-fast-045-003	0.717	0.035	0.024	-0.014	1.000
pu-met-fast-024-001	0.716	0.048	0.038	-0.020	0.988
pu-met-fast-045-001	0.715	0.034	0.024	-0.016	1.000
pu-met-fast-045-002	0.713	0.034	0.023	-0.015	1.000
pu-met-fast-045-007	0.712	0.035	0.021	-0.017	1.000
pu-met-fast-036-001	0.710	0.042	0.037	-0.021	0.988
pu-met-fast-015-001	0.707	0.033	0.018	-0.013	0.985
pu-met-fast-009-001	0.706	0.044	0.032	-0.010	0.964
EUCLID_3x2x64	0.702	0.043	0.025	-0.011	0.965
pu-met-fast-003-103	0.701	0.039	0.018	-0.008	0.962
pu-met-fast-021-002	0.700	0.040	0.027	-0.016	0.968
pu-met-fast-005-001	0.699	0.035	0.025	-0.012	0.965
pu-met-fast-013-001	0.696	0.023	0.018	-0.019	0.986
pu-met-fast-021-001	0.696	0.042	0.028	-0.019	0.968
pu-met-fast-018-001	0.696	0.033	0.030	-0.016	0.965
pu-met-fast-014-001	0.695	0.025	0.019	-0.018	0.985
pu-met-fast-008-001	0.695	0.035	0.025	-0.012	0.955
pu-met-fast-029-001	0.690	0.059	0.036	-0.008	0.915
EUCLID_8x1x130	0.685	0.022	0.010	-0.011	0.965

4

Recent NCERC benchmarks

- Of the 17 ICSBEP evaluations of experiments performed at NCERC, 8 are Pu systems.
- Many of these are included in our modern validation suite.
- Fast, intermediate, and thermal systems.
- Most of the Pu benchmarks are WG Pu.
 - Some upcoming benchmarks with high Pu240.
- Subcritical BeRP experiments:
 - Still need to make validation easier for these experiments.

Jupiter High-240 experiment

- Collaboration with JAEA to help validate Accelerator Driven Systems (ADS).
- Similar to the WG Pu Jupiter experiments.
- Performed at NCERC in 2019.
- ICSBEP evaluation currently underway.

6

EUCLID designed validation experiments optimized to reduce ²³⁹Pu compensating errors & adjusted nuclear data to experiments

Experiment Optimization

• Results of the D-Optimality analysis led us to two configurations:

3 X 2 (Low Mass/Cube) Critical with 384 ZPPR plates (41 kg Pu)

- Both utilize WG Plutonium-Aluminum No-Nickel (PANN) ZPPR plates as fuel
- Non-nuclear components can be used for future experiments as well

8 X 1 (High Mass/Slab reactor) Critical with 1033 ZPPR plates (109 kg Pu)

Experiment execution

- 7 weeks at NCERC: Nov 28 2022 Jan 26 2023
- The most Plutonium ever used in an NCERC Experiment

Measurement Responses

- Six responses were measured for each configuration:
 - Critical: ICNC 2023
 - Subcritical (neutron noise): <u>ANE</u>
 - Neutron leakage spectra: <u>NIM A</u> and APS 2023
 - Rossi-α: future work
 - Reactivity coefficients: ICNC 2023
 - Reaction rate ratios: <u>NSE</u>

Calculated k_{eff} is mostly below experiment and varies with ²³⁹Pu library by 10s to 100s of pcm

3x2 exp: <u>1.00029 +/- 0.00200</u>

Library	keff	keff unc	C-E (pcm)
ENDF/B-VIII.0	1.00012	0.00003	-17
ENDF/B-VII.1	1.00072	0.00003	43
JEFF-3.3	0.99999	0.00003	-30
JENDL-4.0u	0.99953	0.00003	-76
JENDL-5.0	1.00103	0.00003	74
Pu9VIII1beta1-11c	0.9991	0.00003	-119
Pu9LANL10172022-10c	1.00011	0.00003	-18
e81b2	0.99992	0.00003	-37

8x1 exp: 1.00038 +/- 0.00300

Library	keff	keff unc	C-E (pcm)
ENDF/B-VIII.0	0.99838	0.00003	-200
ENDF/B-VII.1	0.99886	0.00003	-152
JEFF-3.3	0.99938	0.00003	-100
JENDL-4.0u	0.99712	0.00003	-326
JENDL-5.0	0.99852	0.00003	-186
Pu9VIII1beta1-11c	0.99757	0.00003	-281
Pu9LANL10172022-10c	0.99802	0.00003	-236
e81b2	0.99815	0.00003	-223

Results when switching Pu239 nuclear data (all other nuclides are ENDF/B-VIII.0)

Future experiments: Lilith

- Much more than just a "Jezebel replacement"
- New enduring Pu assembly
 - Design goal of 100 years of operation
- Ability to change part of the Pu fuel
- Will become the "default experiment" for Pu239 nuclear data validation
- Benchmark can be updated over time as new technologies become available
- Can be used to measure changes over long periods of time
- Would provide new clean Pu assembly for spectral indices, reactor kinetics parameters, etc.

Future experiments: PARADIGM

- Reduce Pu-239 nuclear data uncertainty in the intermediate region
 - And reduce the timeline of the pipeline
- Design differential (LANSCE) and integral experiments (NCERC) simultaneously using machine learning (see Christi Thompson talk)
 - Differential, integral, and theory in single optimized process
- Two validation experiments targeting Pu239 uncertainty reduction for:
 - 1-30 keV
 - 30-600 keV
- More sensitive to Pu239 fission in these energies than any existing experiments

Future experiments: other

- IER 607: Thales
 - Tantalum reflection
 - Validation for Ta for Pu processing
- - Mox fuel with high Pu240
 - Validation for Mox operations in France
- Flattop Pu
 - Updated evaluation
 - General Pu validation and basis for other experiments
- IER 551: EUROPA
 - Intermediate energy Pu (WG and elevated Pu240)
 - Complementary to PARADIGM and
 - TEX experiments

RPUMN

The second

6PUMH

Lessons learned and challenges

- Some lessons learned along the way:
 - AI/ML can be very useful in experiment design
 - Measurement of additional responses can help further constrain nuclear data
 - Integral experiments should be designed in parallel to differential experiments (PARADIGM approach)
 - Performing benchmark evaluation directly after experiment completion is both cost effective and results in better benchmarks
- Some challenges:
 - Funding of benchmark evaluations is similar to the TRL "valley of death". Outside of NCSP, we have had challenges securing funding
 - Documentation for other responses of historical experiments is lacking
 - "New" material is hard to acquire

Conclusions

- Recent and planned NCERC experiments provide rich opportunities for validation of Pu nuclear data
- Including k_{eff} benchmarks as well as many other responses

JX- 4269

- Very interested in future Pu validation
 - Pu239 and Pu240
 - Fast
 - Intermediate
 - All reactions
- Interested in collaboration with CSEWG regarding new validation experiments

Acknowledgments

- Research reported in this publication was supported by the U.S. Department of Energy LDRD program at Los Alamos National Laboratory.
- NCERC is supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.
- Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract No. 89233218CNA000001.

