

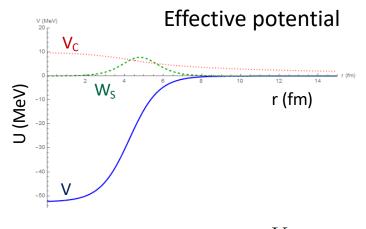
Model Uncertainty Quantification

A.E. Lovell, LANL T-2 Mini-CSEWG

August 15, 2024

LA-UR-24-28652

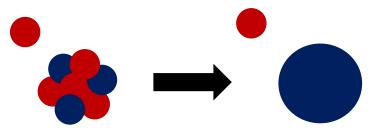
Theory uncertainties largely divide into parametric uncertainties and model uncertainties* Parametric uncertainties Model uncertainties



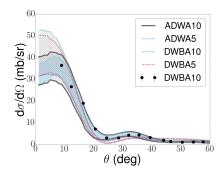
$$f(r; V_o, R_o, a_o) = -\frac{V_o}{1 + e^{(r - R_o)/a_o}}$$

*Plus, numerical uncertainties coming from solving equations, sampling methods, etc.

Missing degrees of freedom

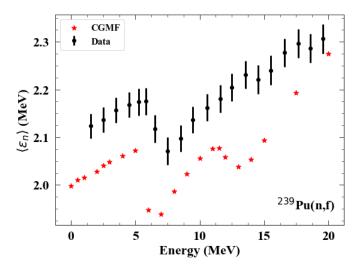


Approximations made



Most theory/model UQ focus has been on parametric uncertainties but there are clearly other sources

Example: neutron energies from CGMF are systematically too low (comparison to Chi-Nu data)



WHY?

- Wrong fission fragment initial conditions?
 - No scission neutrons?
 - Simplified neutron emission?
 - Missing nuclear levels?
 - Incorrect level densities?
 - Other missing physics?

A variety of optimization/UQ methods are in use

χ^2 optimization

• χ^2 metric is minimized

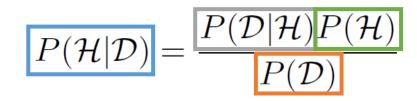
$$\chi^2 = \sum_{i=1}^n \left(\frac{m(\mathbf{x}; \theta_i) - d_i}{\sigma_i} \right)^2$$

 Uncertainties are calculated by numerically constructing a parameter covariance matrix and sampling from that distribution

$$\mathcal{N}(\hat{\mathbf{x}}, \mathbb{C}_p) = \frac{1}{\sqrt{2\pi |\mathbb{C}_p|}} e^{-\frac{1}{2}(\mathbf{x} - \hat{\mathbf{x}})^T \mathbb{C}_p^{-1}(\mathbf{x} - \hat{\mathbf{x}})}$$
$$s^2 = \frac{1}{n-p} \sum_{i=1}^n \left(\frac{m(\mathbf{x}; \theta_i) - d_i}{\sigma_i}\right)^2 \qquad \mathbb{C}_p \to s^2 \mathbb{C}_p$$

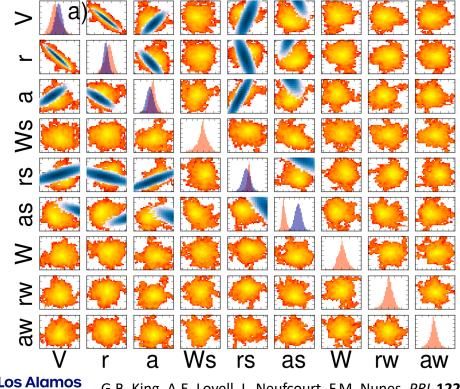
Bayesian optimization*

- Posterior distribution numerically sampled through a Markov Chain Monte Carlo
- Prior incorporates information about what is already known
- Likelihood compares data and model (typically through χ^2)



*linear approximation to Bayesian update in the Kalman filter ^{8/14/24}

Optimization methods matter, especially when parameter space is not well constrained



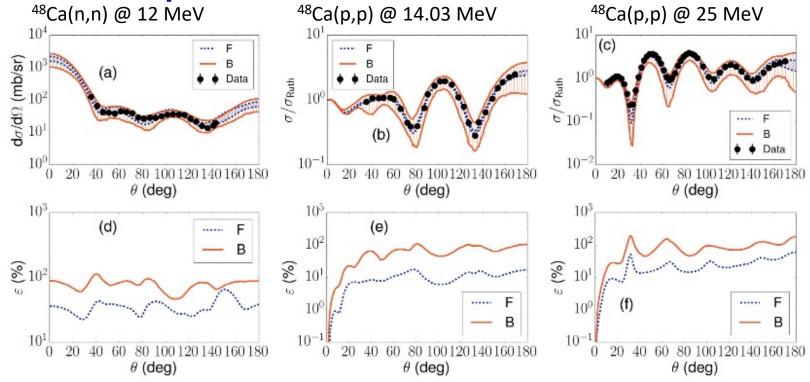
⁴⁸Ca(n,n)⁴⁸Ca @ 12 MeV χ² minimization

Bayesian

Gaussian approximations, reduced parameter space due to unconstrained parameters, etc., change parameter distributions and resulting observable uncertainties

G.B. King, A.E. Lovell, L. Neufcourt, F.M. Nunes, PRL 122, 232502 (2019)

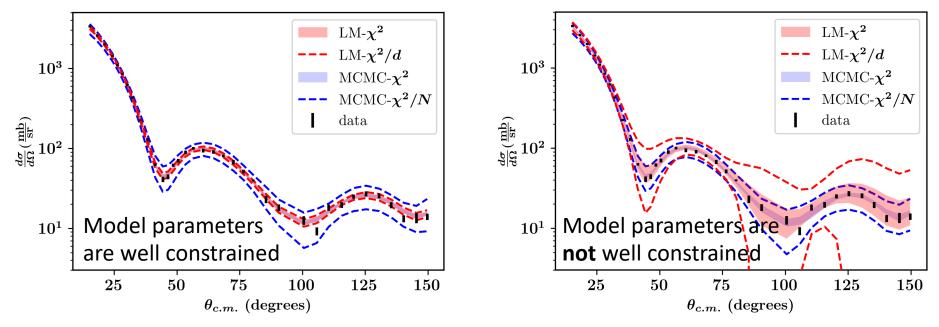
Optimization methods matter, especially when parameter space is not well constrained



Los Alamos G.B. King, A.E. Lovell, L. Neufcourt, F.M. Nunes, PRL 122, 232502 (2019)

How the optimization is performed is important (method and inputs)

 χ^2 (LM) vs Bayesian (MCMC), using a 1/N scaling factor in the likelihood or not



LOS Alamos NATIONAL LABORATORY

C.D. Pruitt, et al., arXiv:2403.00753, LLNL-JRNL-86063, LA-UR-24-21479

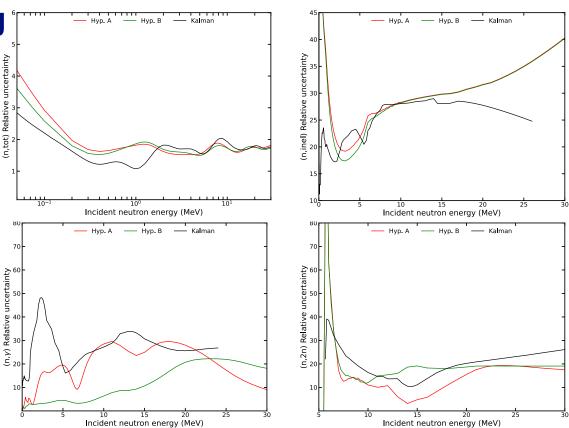
Experimental inputs to optimization/UQ are important, especially weighting Hyp. A Hyp. B Hvp. A Hvp. B - Kalman

n,tot) Relative uncertaint

Relative uncertainty on ²³⁹Pu cross sections, from a Bayesian method vs Kalman filter

Hyp. A treats all data sets equally Hyp. B assigns a normalization factor that is marginalized over

Work by M.R. Mumpower



Experimental inputs to the optimization and covariance procedure matter 2.50 ENDE/B-VIII.0 Schmidt, 1996, Detailed UQ 2.25

Available online at:

https://www.epj-n.org

OPEN 2 ACCESS

2.00

1.75

ชิ 1.50

1.25

1.00

0.75

0.50

σ [b]

Schmidt, 1996, EXFOR und

16 18 20

12 14

Incident Neutron Energy [MeV]

Total Cor

10 11 12 13 14

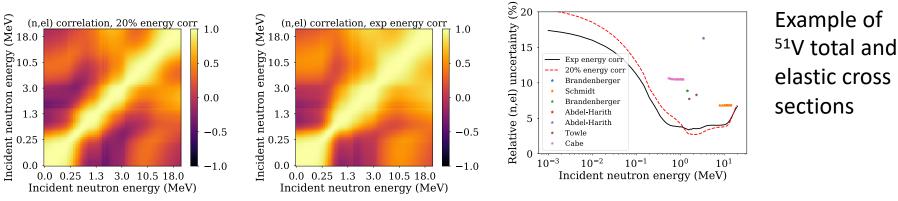
Incident Neutron Energy (MeV)

Templates of Expected Measurement Uncertainties: a CSEWG Effort, Cyrille De Saint Jean and Denise Neudecker (Guest editors)

REGULAR ARTICLE

Templates of expected measurement uncertainties

Denise Neudecker^{1,*}, Amanda M. Lewis², Eric F. Matthews³, Jeffrey Vanhoy⁴, Robert C. Haight¹, Donald L. Smith⁵, Patrick Talou¹, Stephen Croft⁶, Allan D. Carlson⁷, Bruce Pierson⁸, Anton Wallner⁹, Ali Al-Adili¹⁰, Lee Bernstein^{3,11}, Roberto Capote¹², Matthew Devlin¹, Manfred Drosg¹³, Dana L. Duke¹, Sean Finch^{14,15}, Michal W. Herman¹, Keegan J. Kelly¹, Arjan Koning¹², Amy E. Lovell¹, Paola Marini^{16,17}, Kristina Montoya¹, Gustavo P.A. Nobre¹⁸, Mark Paris¹, Boris Pritychenko¹⁸, Henrik Sjöstrand¹⁰, Lucas Snyder¹⁹, Vladimir Sobes²⁰, Andreas Solders¹⁰ and Julien Taieb^{16,21}



os Alamos

Work with D. Neudecker and A. Khatiwada (LANL)

- 0.75

- 0.50

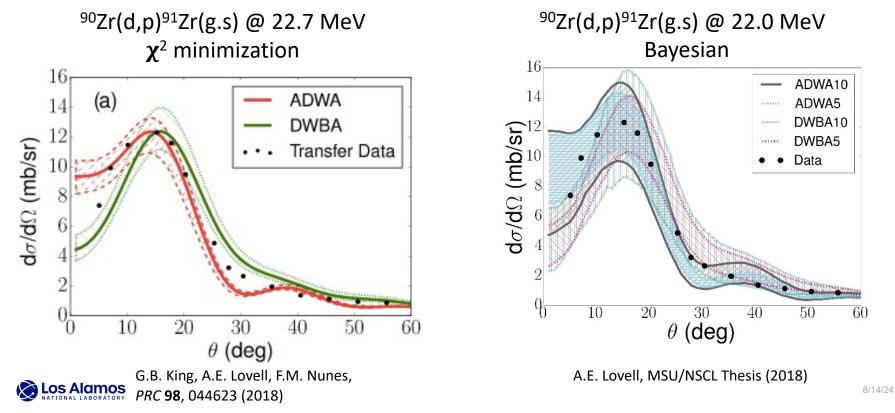
- 0.25

0.00 -0.25

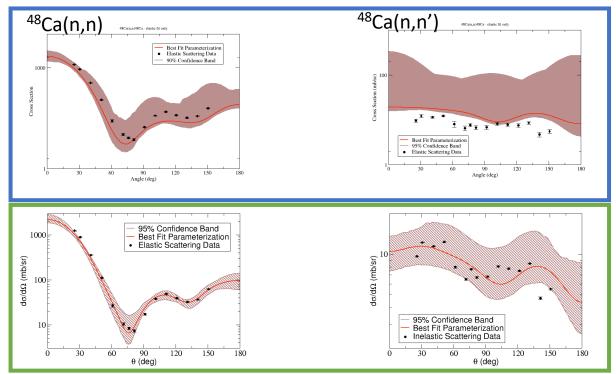
-0.50

-0.75

Larger sources of uncertainty likely come from model simplifications/missing degrees of freedom



Larger sources of uncertainty likely come from model simplifications/missing degrees of freedom



 χ^2 minimization

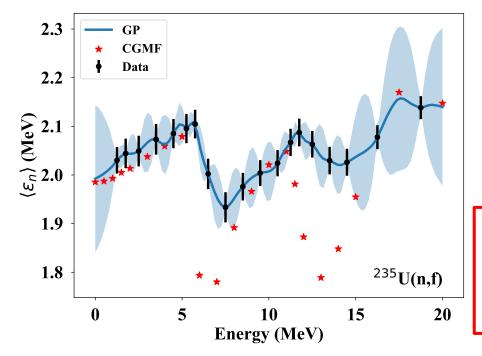
Only elastic scattering fitted

Elastic and inelastic fitted with coupled channel calculation

Unpublished work in conjunction with: A.E. Lovell, F.M. Nunes, J. Sarich, S. M. Wild, PRC 95, 024611 (2017)

How can we quantify what is missing from our models if we don't have the ground truth from theory?

Gaussian processes (and other methods) can be used to systematically "correct" between theory and experiment



Preliminary GP studies: 2020 XCP Computational Workshop (S. Blade and S. Ozier) emulated the discrepancy between CGMF and experimental data for the average neutron energy (with I. Stetcu and M. Grosskopf)

But can we get enough trends to make predictions? Does this type of correction give us any insight into better modeling or how to include more physics?

Bayesian evidence can give a measure of the impact of different data or models

$$p(\mathcal{D}|\mathcal{M}) = \int_{\Omega_{\mathcal{M}}} p(\mathcal{D}|\alpha, \mathcal{M}) p(\alpha|\mathcal{M}) d\alpha_{\mathcal{M}}$$

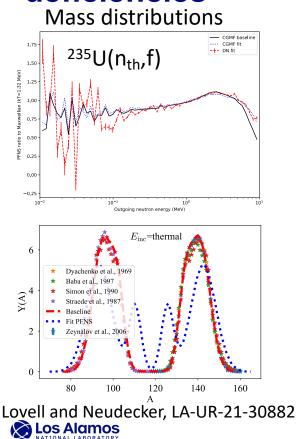
TABLE I. Bayesian evidence (multiplied by 10^{-3}) for the surface model (second row) and the volume model (third row) for both beam energies considered (first row). The ratio between the Bayesian evidence of the volume model over that with the surface model is in the fourth row (the Bayes' factor).

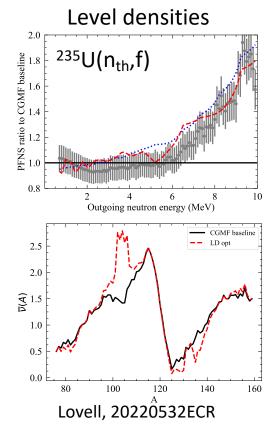
Energy	9 MeV	65 MeV
Evidence (surface)	1.06 0.65	0.02 0.13
Evidence (volume) Bayes' factor	0.65	6.9

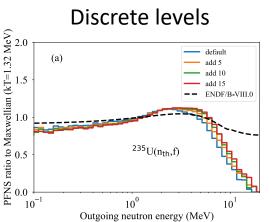
Here, we looked at the difference between the imaginary surface and volume terms in the optical potential for two scattering energies, where volume OR surface absorption should dominate The differences in Bayesian evidence

reflects those model differences

WARNING: Parameters can try to compensate for model deficiencies







Discrete nuclear levels have not been measured for all of the neutron-rich nuclei that are produced by fission; we can use some model to include more

Conclusions and outlook

- Uncertainty quantification is important for a variety of applications and basic science, basic theory has been catching up
- Most focus has been from theory in particular on parametric uncertainties but these are only part of the total model uncertainty, which should be taken into account
- Quantifying model uncertainties is hard, especially when missing physics might not be easily described or a simplified model is not a subset of a more accurate model
- Tools are being developed to begin to investigate some of these challenges
- Model uncertainty should not be ignored just because it's difficult

Acknowledgements

- F.M. Nunes, M. Catacora-Rios, C. Hebborn (MSU/FRIB)
- S.M. Wild, J. Sarich (formerly ANL)
- G.B. King (WUStL, formerly MSU)
- C.D. Pruitt (LLNL)
- I. Stetcu, P. Talou, T. Kawano, M.R. Mumpower, D. Neudecker, A. Khatiwada, K.J. Kelly, M. Grosskopf (LANL)
- S. Blade, S. Ozier (LANL XCP Computational Workshop 2020)
- Funding from ASC, NCSP, LDRD (20220532ECR), DOE NNSA SSGF (pre-LANL)

Thank you!

Questions?

