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Peelle’s Pertinent Puzzle (PPP)

« In 1987 at Oak Ridge National Lab, R.W. Peelle described having two
observations to estimate a shared mean:

y1 = 1.0+ 10% y, = 1.5+ 10%
and  20% fully correlated uncertainty

* Uncertainties
— “Fully correlated” means multiplicatively up or down together.
— Three uncertainties are taken to be independent.
— Relative uncertainties are assumed to be “1 sigma” values

» Peelle was a physicist doing nuclear data evaluation and he worked out the
generalized least squares (GLS) estimate of the mean, as is standard in the field
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Peelle’s Pertinent Puzzle (PPP)

» Generalized least squares as per Peelle:

y = (1.0,1.5)7
=)

> =0.1% - diag(y?) + 0.22 - yyT

« And the answer s ...
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Peelle’s Pertinent Puzzle (PPP)

» Generalized least squares as per Peelle:
y = (1.0,1.5)7 l g=ATz" 1) 117z 1y

> =0.12 - diag(y?) + 0.22 - yyT 6% =1Tz1

« And the answer s ...
below both

ﬁ — (.88 i 0.25 observations!

« Terminology: Data Weighted — Generalized Least Squares (DW-GLS)
refers to GLS with y in the assumed covariance matrix
— Many scientists don’t consider having y in its own covariance as odd
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As fully-correlated error increases we expect
« proportional increase in uncertainty,
« and not additional bias...

Yy = 1.5 fmmmmmmm———————————m—————m e ———————————
Y1 = L0 frmmmmm
0.5 1 -
... but neither
0.0 holds with
DW-GLS
—0.5 1 === Observations
yy' estimate
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This problem exists more widely when using generalized
least squares for nuclear data evaluation
DW-GLS Estimator

6 ) Fitted curves (prior not shown)
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(Data from Marini et al., Phys Letters B, 835, 2022,137513)



High-Energy Physicists
know this as D'Agostini Bias
Example of a recent

T non-explanation
L2 ]
mé_ l l | } “The best-fit undershoots the
ot ] data, essentially because with
s A _ multiplicative uncertainties a
SN “best fit” lower prediction has a smaller
/3 (Gev) uncertainty [D’Agostini, 1994].”

Fig. 2. R measurements from PETRA and PEP experiments

with the best fits of QED + QCD to all the data (full line) and

only below 36 GeV (dashed line). All data pomnts are corre-
lated (see text).

D'Agostini, Giulio. "On the use of the covariance matrix to fit Ball, Richard D., et al. "Precision determination
correlated data." Nuclear Instruments and Methods in Physics of the strong coupling constant within a global
Research Section A: Accelerators, Spectrometers, Detectors PDF analysis: NNPDF Collaboration." The

and Associated Equipment 346.1-2 (1994): 306-311. European Physical Journal C 78 (2018): 1-16.



What is going on in PPP?

* |Is this not a problem at all?

— Two observations with correlated errors aren’t at all unlikely to fall on the same side of
the mean

= Why biased low rather than high? Symmetry would seem to make a case for no preference in
either direction

= Why so far outside the data? The estimate makes one observation a 3o outlier
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What is going on here?

* |s this not a problem at all?

— Two observations with correlated errors aren’t at all unlikely to fall on the same side of
the mean

» |Is this a problem with the GLS estimator for relative, correlated errors?

— Let's explore a couple other estimators:
= Maximum likelihood estimator: y ~ MVN(u, diag(0.1%2u?) + 0.22uu™)

= [teratively re-weighted least squares: Do GLS, but iterate from initial fi = y using
% = diag(0.1? fi?) + 0.2 au’

* |s this a fluke of the two-observation problem?
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Recall

What is going on here? y1 = 1.0+ 10%

* |Is this a problem with the GLS estimator for relative, correlated errors?
— Let’'s explore a couple other estimators:

= Maximum likelihood estimator: fdy e = 1.531 MLE is above both

_ _ observations!
= [teratively re-weighted least squares: frs = 1.25

Observations just
touch at +20

MLE links the mean
0@ Los Alamos to this spread.
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What is going on here?

* |s this not a problem at all?

— Two observations with correlated errors aren’t at all unlikely to fall on the same side of
the mean

* |s this a problem with the GLS estimator for relative, correlated errors?

* Is this a fluke of the two-observation problem?
— Simulate 500 samples, each with
= n=100 observations
= mean=1.25
» SDs: 10% independent + 20% fully-correlated
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Estimates of the mean parameter

from 500 simulated samples

o

2.0 - _8_
(o]
- T
L
1.0 1
O
0.5 +
L :
0.0 © , .
DW-GLS IRLS MLE
Los Alamos

NATIONAL LABORATORY

Why does the MLE
look great now?



Estimates of the mean parameter with data generated
with 12% independent error when 10% is assumed
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The MLE is sensitive
to mis-specified
uncertainty!



Conclusions so far:

« DW-GLS (i.e., using o?yyT in the covariance) biases estimates toward zero
- large ¢ = bad bias.

 The MLE (and Bayes) is efficient but sensitive to mis-specified uncertainties

» |IRLS is unbiased and robust to mis-specified uncertainties
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PPP / D’Agostini Bias features in many papers over 30 years

In fact, IRLS has been
reinvented to fix the bias

— but it is not recognized
as fully legit

E.g., from Capote, et al.
(2009)
An empirical “fix”
compensates for PPP
in a practical way as
suggested by Chiba
and Smith (1991).
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Why does DW-GLS behave so badly?
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Insight from aregression
problem

Regress y on two predictors
y=al+px+yz+e
Suppose we care about «, 8, but y is
just a nuisance with priors
y ~N(0,62), €~ N(0,6D

Integrating over y:
y=al+fx+e
e ~ N(0, o2I + o2zz")

|.e., one-predictor but correlated errors
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Application to DW-GLS

DW-GLS uses
> =0.12 - diag(y?) + 0.22 - yyT

and the yyT is like regressing y on itself!

With z = y, the covariance absorbs the
signal and
(@B) - (0,0) as gy —

Larger correlated error = more over-fitting

Thatis, DW-GLS with a fully

correlated term yyT is
inherently biased toward zero.




Coming back to DW-GLS, is it at least OK for small
correlated uncertainty?

2.00
¢ p=0.01
1.75 - p=0.02
No 5o ® p=0.05
~ Itis not consistent. T : E:g;
— Adding more data drives the SR 2 B e e '
estimate to O for any relative 1.00 - $ ¢ o
correlated uncertainty, p>0
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Conclusions

Advice for analysts

- DO NOT represent fully-correlated relative uncertainty as p?yy!
— equivalent to adding y as a predictor for y itself
— this drives the signal of interest to zero
— Results in bad mean AND bad uncertainty

« DO represent the uncertainty as p? fi i’ and use IRLS

— this is robust to mis-specified p
— also robust to mis-specified independent error

« DO carefully consider how relative error can allow noise to influence the mean
estimates with MLE and Bayesian inference
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