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AIACHNE is a multidisciplinary effort funded by the DOE
Office of Science to use data-driven science to design
experiments to improve nuclear data
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One central source of information for estimating nuclear
data is through differential measurements

These experiments are composite

measurements that depend on several sub-
measurements characterized by a large set of
“metadata” describing the data processing
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These experiments often disagree, beyond carefully quantified uncertainties.
Understanding possible sources of experiment-to-experiment discrepancy is key
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to improving estimates and uncertainties
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One way of estimating nuclear data is through direct,

“differential” measurements _ czsemusoas
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These experiments often disagree, beyond carefully quantified uncertainties.
Understanding possible sources of experiment-to-experiment discrepancy is key
%) Los Alamos to improving estimates and uncertainties

NATIONAL LABORATORY

100



AIACHNE is using a sparse Bayesian model to identify
potential sources of bias in 2°°Cf PFNS data

« The traditional approach to
evaluation uses generalized
least squares to evaluate
values on fixed energy grid:

y= Do+ ¢
g ~ N(0, diag(Dow)?)

y = data at arbitrary energies
o = Evaluated PFNS on fixed energy
grid
D = energy interpolation matrix
Do = interpolated PFNS

u = ‘known’ relative std. dev.
(error bars)
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AIACHNE is using a sparse Bayesian model to identify

potential sources of bias in %°2Cf PFNS data

« We are extending this to
include a feature/energy-
dependent, multiplicative bias

— Sparsity ensures there is no
bias for most energies but the
term is active when the data
indicate the need

y= Do-e’+¢

0 = By =relative bias
= bias basis matrix
y = bias coefficients

- = element-wise product
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Rather than pre-select the width of the bases for the energy-
dependent bias, we developed a sparse, multi-scale approach

Basis Functions to Capture Bias Basis Functions to Capture Bias

We need to
induce sparsity
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Sparsity-inducing Bayesian models provide sparse
estimation with uncertainty

* The “horseshoe” prior proposed by Carvalho, et al. 2009 in
AISTATS encourages estimates to either be shrunk to O or Horseshoe
completely dictated by the data.

— See the “horseshoe” shape in the lower right
6 = By =relative bias
B = bias basis matrix
Y ~ N(0,277%)

Probability Density

Aj ~ C’;(O, 1)
T~ N°(0,7) 0 05 10
 C*()is a Half-Cauchy distribution and N* () is Half-Normal \ b /
* Sampling done in Stan
— A python package for this model is in progress Model is weighted toward a
) spike at zero and spike at “no
* Bayesian sparse methods are slower than LASSO, but prior constraint”

provide critical uncertainty information to improve scientific
interpretation
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The resulting model captures strongly suspected
biases in the 2°°Cf PFNS data
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High-E bias identified across several feature groups,
less obvious but experimentally explainable.

Fission Detection Efficiency Correction Method: Calculated/Measured
Effect at high energies was
attributed to many features.

Detailed expert discussion and
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Basis coefficients can be further used to estimate the
evidence for a bias term existing for a feature in a
particular energy range
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Coefficient samples can also indicate when multiple
explanations are consistent with the data

* For agiven energy range, some experimental
data were discrepant.

 The model can identify that either some data is
biased high (positive values on the x-axis) or
some data is biased low (negative values on y-
axis).
— Note that the model picks one of two

explanations — it does not split the difference and
say the middle is best.

— The model also assigns probabilities to each
explanation as seen on the right.

4+ And the probability that there is no actual bias
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To summarize:

AIACHNE had developed a sparsity-inducing Bayesian model for capturing biases in
experimental observations for nuclear data evaluation based on metadata features

— Leveraging sparse Bayesian methods to learn how experimental features are
related to biased or discrepant data

« The methods we are developing provide power to discriminate across a
large set of features while providing uncertainty in the estimated nuclear data
values that incorporate the bias estimation

« We have obtained results applying the methods to 252Cf data

— These results have been used to guide to the experimental design efforts of
AIACHNE and are applicable to a wide array of future problems in bias
estimation and evaluation with discrepant experimental observations in nuclear
data
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