IRRADIATION TESTING OF

COMMERCIAL DC|DC BUCK CONVERTERS FOR ePIC

May 15th 2024, UC Davis Crocker Cyclotron Presentation for DAQ & Electronics Gerard Visser Indianna CEEM Tim Camarda for BNL

With contributions for irradiation studies from: Alex Jentsch, BNL (simulations for ePIC)

- Testing requirements
- Irradiation results & plots
- Next steps

DUT at Cyclotron facility, proton exit window (Ø6cm)

General Power Requirements

- All devices selected for testing were selected on their electrical characteristics & are candidates for various detector electronics use at ePIC
 - ✓ Noise < 0.5%, Ripple_(20MHZ BW) < 0.3%</p>
 - ✓ Efficiency: at least 70%
 - ✓ V_{IN} 12V 15V V_{OUT} 1V 5V
 - ✓ Power Density & Footprint Constraints
 - ✓ Magnetic field (2 Tesla) => non-iron core inductors

Radiation testing requirements

- Radiation Tolerant to a Fluence of (1 x 10¹² /sec/ cm²) ten operational Years, 1MeV equivalent damage
- TID (100K_{RAD})

IRRADIATION REQUIREMENTS & BEAM CONDITIONS

Reference slide 16 for cyclotron configuration screen

A. Akkerman et al. | Radiation Physics and Chemistry 62 (2001) 301-310

Fig. 6. The relative damage, K_p/K_n , as a function of proton energy where K_n is taken for 1 MeV neutrons.

Proton energy	=> 64MeV
Cyclotron flux	=> 1.24E8 /sec cm² (what the cyclotron delivers)
Beam width	=> 6.0cm
Beam Current	=> 2.0nA scaled for 1MeV neutron equivalent damage
Flux at 2nA	=> 2.0nA x 1.24E8 /sec cm ² = 2.48E8/ sec cm²
Proton fluence integ	rated for 10 operational years (1MeV neutron equivalent)
=> <mark>1.0E12 n /sec c</mark>	2 ^{m2}

Irradiation time to full fluence => 2700 seconds (45 min)

IRRADIATION TEST RESULTS

DEVICE	LTC3600 (1.5A)
Vin to Vout	13 V to 1.8 V
load	1.5 Ω (1.2A)
64 MeV p flux	2.49E8 p/cm^2*s
2% output deviation	no significant deviation
unstable/flaky	no
output dead	1.90E11 p/cm^2

also see bonus plots in backup slides for Vref out

IRRADIATION TEST RESULTS

LTC3626 (2.5A)				
16 V to 1.8 V				
1.5 Ω (1.2A)				
2.33E8 p/cm^2*s				
no significant deviation				
no				
1.92E11 p/cm^2				

Exposure time until part failed: 1.9E11 / 2.48E8 /sec = 13 minutes => ~30% of specified fluence

DEVICE	LTC7890 (2-ch) (15A /ch)
Vin to Vout	12 V to 1.2 V
load	0.2 Ω, 0.28 Ω (6Α, 4.3Α)
64 MeV p flux	2.51E8 p/cm^2*s
2% output deviation	(<20mV _{P-P})
instability	slight instability observed
output dead	2.06E11 p/cm^2

NOTE: Some efficiency effects can be contributed to variations caused by temperature coefficient (±400ppm/°C) of the load resistors. This applies to all tested devices.

DEVICE	MP2318 (2A)
Vin to Vout	14 V to 1.2 V
load	1Ω (1.2A)
64 MeV p flux	2.35E8 p/cm^2*s
2% output deviation	4.83E10 p/cm^2
instability	1.08E11 p/cm^2
output dead	1.38E11 p/cm^2

DEVICE	LTC7151 (15A)				
Vin to Vout	16 V to 1.2 V				
load	0.2 Ω (6A)				
64 MeV p flux	2.49E8 p/cm^2*s				
2% output deviation	no significant deviation				
instability	no				
output dead	2.21E10				

DEVICE	MP2276 (8A)				
Vin to Vout	12 V to 1.2 V				
load	0.28 Ω (4.3A)				
64 MeV p flux	2.50E8 p/cm^2*s				
2% output deviation	no significant deviation				
instability	no				
output dead	1.41E10 p/cm^2				

Neutron Fluence at ePIC:

(1MeV equivalent) fluence normalized for 1 fb⁻¹ **100 x fb-1 = 1 year**. Very conservatively, we can expect an upper bound of 100 fb-1/year of data when the machine reaches top luminosity

Radiation simulation from Alex Jentsch, BNL

TID from Hadron & Electron at ePIC:

Combined ionizing dose from Hadron & Electron sides

Radiation simulation from Alex Jentsch, BNL

Note: to get the TID for one year of operation:

lonizing dose (normalized for fb⁻¹)

Ionizing dose of <mark>3x10² x 100</mark> = 30kRads/ year x 10 years = 300kRads

Non Ionizing Energy Loss

Neutron induced displacement damage in silicon

Fig. 6. The relative damage, K_p/K_n , as a function of proton energy where K_n is taken for 1 MeV neutrons.

Ekin [MeV] P	D/(95MeVmb) Huhtinen
6.500E+01	1.580E+00
1.000E+00	3.133E+01

https://rd50.web.cern.ch/niel/protons.pdf

Ekin [MeV] N	D/(95MeVmb) Konobeyev
6.000E+01	1.644E+00
7.000E+01	1.499E+00
6.500E+01	1.572+00 (1.644+1.499)/2
1.050E+00	8.020E-01

https://rd50.web.cern.ch/niel/neutrons.pdf

Source: https://rd50.web.cern.ch/niel/

Testing Conclusions

- LTC7890, LTC3600, LTC3626
- LTC7151, MP2318, MP2276
- Any difference between manufacturer?
- Any of the parts suitable for use in ePIC?

What's Next

- => operated SAT for ~ 30% of goal
- => failed test < 30% of goal

- => LT devices seem to hold up better than MPS but inconclusive
- => Possible depending on location (need safety margin also)

From our meeting on Tuesdays discussion of ePIC radiation studies:

Meeting attendees: Elke, Alex, Fernando, Gerard, Oleg, Tim

We would like to consult with CERN collaborators who have direct experience with rad hardened specifications & testing.

For example: we would like to see how CERN test their devices compared to our test at UC Davis. This is so that we have a direct 1:1 comparison with CERN red bard appear.

direct 1:1 comparison with CERN rad hard specs.

PLAN FORWARD FOR POWERING ePIC ELECTRONICS

Depending on location at ePIC & sub detector, COTS devices will be not suitable:

- Use a combination of bPOL48V buck controller and Linear Regulators: Example => (24 Vin to 3.3Vout)
 - Output voltage Vout 0.6 to 24 V => Testing @ 3.3Vout & 1.2Vout
 - <u>Testing @ 1.2Vout</u>:
 - <u>Testing @ 3.3Vout</u>:
- Stock still remains for bPOL12V...but would need to purchase a head of time (including spares)

CERN DCDC WEBSITE

particle	source	Energy	fluence (particle 1e15/cm2)	1MeV equivalent e15	TID (Mrad)	number of samples	bias?	version tested	notes
			2.00	2.00	2	2	unbiased		
neutrons	Triga	<10 MeV	5.00	5.00	5	2	unbiased	V5	
neutrons	iliga		6.00	6.00	6	2	unbiased	¥5	
			7.00	7.00	7	2	unbiased		
neutrons	ouvain la Neuv	е	0.28	0.28		1	biased Vin=10V, enabled	V5	
rotons+neutro	MC40+Triga		0.4p+0.6n	1.48	54	4	unbiased	V5	
			0.41	0.91	108	6	unbiased		
		0 27 MeV	0.53	1.16	137	6	unbiased		
protons	MC40		0.65	1.43	169	6	unbiased	V5	
			0.90	1.98	234	5	unbiased		
			1.20	2.64	312	5	unbiased		
			1.43	0.95		2	unbiased		
protons	Boston GH	230MeV	1.82	1.21		2	unbiased	V5	
			2.34	1.55		2	unbiased		
			0.90	0.50	24	4	unbiased		
		IRRAD 24GeV	1.91	1.06	52	4	unbiased		
			2.41	1.34	66	4	unbiased	V6	
			2.86	1.59	78	2	unbiased		
protons	IRRAD		3.07	1.71	84	2	unbiased		
			4.71	2.62	128	2	unbiased		
			4.58	2.54	125	1	biased =0, turned on every 5 min	V6	V33driver drops, irradiaeted up to 7e15p/cm2, 1 week of appealing 100C back operative
			4.22	2.34	115	1	iased Vin=10V, enable	V6	week of annealing 1000, back operative
protons	Ovrea	27 MoV	0.53	1.166	150	1	Biased Vin-9V	VG	still operative thanks to PMTH Aachen
protons Cyrce	27 MeV	0.6	1.32	171.4	1	Blased VIII-9V	Vb	vo still operative , thanks to k w TH Aachen	

Cyclotron configuration setup screen

ent File				Run Comment	
Riverside/UC-Riverside_	5-15-2024	nen ander and and and and and and and and an	•		
rent Setup		Pre-Run		This Run	
am Type: Proton		Electrometer Ran	ige: 20 nA	Run Number:	3
am Energy: 64 Me	N	FC Leakage:	-7.6e-13 ± 2.48e-13	Device Name:	LTC3600
rget: Silico	a	SEM Leakage:	1.33e-11 ± 1.17e-12	Run Goal:	6.6e+11 p/cm ²
=/dx (MeV·cm²/g): 8.334	4	FC/SEM Ratio:	1.9 ± 0.0088	Projected Time:	2.63e+03 s
blictice					
			Average Beam Current (A):	2.01e-09	
lapsed rune (s).	2.010-00 + 1 14e-1		Accumulated Dose (Rad):	(Rad): 7.05e+03	
leam Current (A).	2.010-09 - 1.170 -	0			
Run Dose (Rad):	7.05e+03			5.20010	
Run Fluence (p/cm ²):	5.28e+10		hing Dose Rate (rad/s):	33.5	
Avg Beam Flux (p/cm ² /s): 2.51e+08		Start Time of Last Run:	5/15/2024 10:18:	05	
Run Progress					
				7% Paus	e Stop
and the second s					
Actions					
New File	Close File		un Settings Rati	o	About
Herr i me	File Setun View Printout			A CONTRACTOR OF THE OWNER	

References

Lindstroem, G. (n.d.). gunnar. https://rd50.web.cern.ch/niel/default.html

Radiation doses - Electron-Proton/Ion collider experiment. (n.d.).

https://wiki.bnl.gov/EPIC/index.php?title=Radiation_Doses#Radiation_Doses_and_Fluences_from_10x275_GeV_e+p_minimum-bias_events

About CNL:: Crocker Nuclear Laboratory. (n.d.). https://crocker.ucdavis.edu/about-cnl

https://indico.bnl.gov/event/14948/contributions/60508/subcontributions/1796/attachments/40039/66750/20220228 ITkStripPower.pdf

https://power-distribution.web.cern.ch

Damaging effects:

https://rd50.web.cern.ch/niel/default.html

Enhanced proton and neutron induced degradation and its impact on hardness assurance testing. In Sandia National Lab. (SNL-NM), Albuquerque, NM (United

States). https://www.osti.gov/servlets/purl/1146194

https://www.ti.com/pdfs/hirel/space/HEART05-G1paper.pdf

https://nepp.nasa.gov/DocUploads/C688DA3C-F0B2-460E-97E0F71B28EE85FE/DispLin-98.pdf

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4337442

LTC7890 Output deviation under 64MeV proton beam

Slight instability (output deviation) observed only when beam is on (Faraday cup open)