Inclusive cross sections with "real" electron ID

ePIC joint physics/software meeting June 26, 2024

Tyler Kutz

Cross section from simulation files

Acceptance and bin migration corrections from simulation

$$\frac{d\sigma}{dx_B \, dQ^2} = \frac{N}{C_{acc} \cdot C_{bin} \cdot L \cdot \Delta x_B \Delta Q^2}$$

$$\sigma_{red} = \left(\frac{d\sigma}{dx_B dQ^2}\right) \cdot \frac{Q^4 x_B}{2\pi\alpha^2 Y_+ \hbar^2 c^2}$$
$$Y_+ = 1 + (1 - y)^2$$

$$C_{acc} = \frac{N_{rec}(x_{gen}, Q_{gen}^2)}{N_{gen}(x_{gen}, Q_{gen}^2)} \qquad C_{bin} = \frac{N_{rec}(x_{rec}, Q_{rec}^2)}{N_{rec}(x_{gen}, Q_{gen}^2)}$$

• Scale counts to integrated luminosity of L = 10 fb⁻¹. • Bin volumes $\Delta x_B \Delta Q^2$ from Monte Carlo (account for cuts)

• Using same simulated events for analysis and corrections... by definition will obtain the generated distributions • Detector and reconstruction performance determines size of the corrections

Currently implemented electron ID

- Start with all reconstructed particles with negative charge
- Select particles with 0.9 < E/p < 1.2
 - Reconstructed E and p
 - Truth track-cluster matching
- Take electron with largest $E p_z$
 - Reconstructed E and p
 - Truth (hadron) PID
- Shortcomings:
 - Still using truth information
 - Calculated values of E/p and $E p_z$ not saved in output

Currently implemented electron ID

- Start with all reconstructed particles with negative charge
- Select particles with 0.9 < E/p < 1.2
 - Reconstructed E and p
 - Truth track-cluster matching
- Take electron with largest $E p_z$
 - Reconstructed E and p
 - Truth (hadron) PID
- Shortcomings:
 - Still using truth information
 - Calculated values of E/p and $E p_z$ not saved in output

- Evaluating performance
 - How often does reconstruction-based electron ID select the correct particle? Are most failures due to no identified particles, or mis-identified particles?
 - What is the impact of eID on corrections and bin stability/purity?

Details of the reconstruction and analysis

- Tag 24.06.0
- NC DIS events only!
- Electron track reconstruction only (focus on elD performance)
- Repeat analysis twice using reconstruction-based electron ID (eID) and truth-based electron ID (true ID).

• Kinematic cuts:

- $Q^2 > 4 \text{ GeV}^2$.
- $W^2 > 10 \text{ GeV}^2$.

• 0.05 < y < 0.95

eID success/failure rates

• Percentage of luminosity-weighted events (no kinematic cuts)

- Success (eID identifies same reconstructed particle as true ID)
- Fail, no ID (eID fails to identify reconstructed particle)
- Fail, wrong ID (eID identifies different reconstructed particle than true ID)

	Success	Fail, no ID	Fail, wrong ID
5x41 GeV	87.3%	9.9%	2.8%
10x100 GeV	91.5%	6.5%	2.0%
18x275 GeV	80.7%	16.0%	3.3%

eID success/failure rates

• Percentage of luminosity-weighted events (no kinematic cuts)

- Success (eID identifies same reconstructed particle as true ID)
- Fail, no ID (eID fails to identify reconstructed particle)
- Fail, wrong ID (eID identifies different reconstructed particle than true ID)

	Success	Fail, no ID	Fail, wrong ID
5x41 GeV	87.3%	9.9%	2.8%
10x100 GeV	91.5%	6.5%	2.0%
18x275 GeV	80.7%	16.0%	3.3%

- Expect largest impact on acceptance
- To be done: examine dependence of success/failure rates on kinematic/electron variables

Acceptance correction (10x100 GeV)

True ID

 $C_{acc} = \frac{N_{rec}(x_{gen}, Q_{gen}^2)}{N_{gen}(x_{gen}, Q_{gen}^2)}$

Acceptance correction (18x275 GeV)

True ID

elD

 $C_{acc} = \frac{N_{rec}(x_{gen}, Q_{gen}^2)}{N_{gen}(x_{gen}, Q_{gen}^2)}$

Acceptance correction (5x41 GeV)

True ID

 $C_{acc} = \frac{N_{rec}(x_{gen}, Q_{gen}^2)}{N_{gen}(x_{gen}, Q_{gen}^2)}$

Bin migration correction (10x100 GeV)

True ID

 $C_{bin} = \frac{N_{rec}(x_{rec}, Q_{rec}^2)}{N_{rec}(x_{gen}, Q_{gen}^2)}$

Bin migration correction (18x275 GeV)

True ID

elD

 $C_{bin} = \frac{N_{rec}(x_{rec}, Q_{rec}^2)}{N_{rec}(x_{gen}, Q_{gen}^2)}$

Bin migration correction (18x275 GeV)

True ID

 $C_{bin} = \frac{N_{rec}(x_{rec}, Q_{rec}^2)}{N_{rec}(x_{gen}, Q_{gen}^2)}$

Bin purity (10x100 GeV)

True ID

elD

Bin purity (18x275 GeV)

True ID

elD

Bin purity (5x41 GeV)

True ID

Bin stability (10x100 GeV)

True ID

elD

 $S = \frac{N_{gen+rec}}{N_{gen}}$

Bin stability (18x275 GeV)

True ID

elD

Bin stability (5x41 GeV)

True ID

$S = \frac{N_{gen+rec}}{N_{gen}}$

Reduced cross section (10x100 GeV)

$$\sigma_{red} = \left(\frac{d\sigma}{dx_B dQ^2}\right) \cdot \frac{Q^4 x_B}{2\pi\alpha^2 Y_+ \hbar^2 c^2} \qquad Y_+ = 1 + (1-y)^2$$

ePIC 24.06.0 ep 10x100 GeV, 10 fb⁻¹ Pythia8 NC DIS $Q^2 > 4 \text{ GeV}^2$ $W^2 > 10 \text{ GeV}^2$ 0.05 < y < 0.95

x

- Still working towards completely reconstruction-based electron ID
 - Track-cluster matching (Aliaa Rafaat, AUC)
 - Hadron PID

- Still working towards completely reconstruction-based electron ID
 - Track-cluster matching (Aliaa Rafaat, AUC)
 - Hadron PID
- Optimize existing eID cuts on E/p and $E p_z$

- Still working towards completely reconstruction-based electron ID
 - Track-cluster matching (Aliaa Rafaat, AUC)
 - Hadron PID
- Optimize existing eID cuts on E/p and $E p_z$
- Develop further eID cuts on calorimeter shower shape (Andrew Hurley, UMass Amherst)

Future/ongoing physics work

- Systematic studies
 - Kinematic resolutions
 - Energy calibration
 - Pion contamination
- Double-spin asymmetries (Win Lin, SBU)
- Need eA events (not possible with Pythia8...?)

